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Résumé : La diffusion des technologies d’automatisation soulève des questions sur
l’avenir du travail, ce qui conduit à des appels à la réglementation. Les discussions
actuelles s’intéressent aux stratégies des entreprises qui adoptent les technologies.
Dans cet article, j’étudie dans quelle mesure les ajustements du côté de l’offre façon-
nent les effets des interventions politiques. Je me concentre sur le marché mondial
des robots industriels, un type de technologie d’automatisation de premier plan, où
quelques entreprises multinationales dominent les ventes. Pour évaluer la manière
dont ces multinationales réagissent aux changements de politique, je collecte de nou-
velles données sur leurs caractéristiques et leurs réseaux de vente au niveau mondial.
Je développe et estime ensuite un modèle d’équilibre général multi-pays mettant en
scène des vendeurs multinationaux de robots en situation d’oligopole. À l’aide de
ce modèle, je constate que les réactions des multinationales en matière d’entrée sur
le marché et de fixation des prix se transmettent au niveau international et amplifient
les effets globaux et distributifs des politiques ciblant les robots.

Mots-clés : Multinationales, Pouvoir de marché, Automatisation

Global Robots

Abstract: The diffusion of automation technology raises questions about the future
of work, leading to calls for regulation. The ongoing discussions center on the de-
cisions of technology adopters. In this paper, I study how supply-side adjustments
shape the effects of policy interventions. I focus on the global market of indus-
trial robots, a leading type of automation technology, where a few multinational
enterprises (MNEs) dominate sales. To evaluate how these MNEs respond to pol-
icy changes, I collect new data on their characteristics and global sales networks.
I then develop and estimate a multi-country general equilibrium model featuring
oligopolistic multinational robot sellers. Using this model, I find that MNEs’ market
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entry and pricing responses transmit internationally and amplify the aggregate and
distributional effects of policies targeting robots
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1 Introduction

The diffusion of automation technologies, including robotics and artificial intelligence,

raises questions about the future of work. On the one hand, these technologies au-

tonomously perform several complex tasks, fostering productivity growth. On the

other, their adoption also brings about job displacement and inequality concerns. For

these reasons, academics and policymakers discuss about policies to regulate automa-

tion (Brynjolfsson and McAfee, 2014; Acemoglu and Johnson, 2023).

The current discussions center on the impact of policy interventions on the produc-

tion and employment decisions of technology adopters. Responses from the supply side

are overlooked. However, since the global supply of automation technologies is often

dominated by a few large multinational enterprises (MNEs), these responses may be

sizable and represent a determining factor for the ultimate effects of any policy.

Studying the supply of automation technologies is challenging, as there is no com-

prehensive dataset about automation suppliers and their global activities. Additionally,

a theoretical framework that accounts for the features of the automation industry is

necessary to disentangle adjustments in supply and demand after a policy change.

In this paper, I address these challenges in the context of the global market of in-

dustrial robots (henceforth “robots”),1 an industry where four MNEs account for more

than 50% of global sales (Leigh and Kraft, 2018). This is an ideal setting for two rea-

sons. First, robots are a leading type of automation technology, contributing to about

10% of the total market value of the automation industry (UBS, 2020). Second, there

is an extensive body of literature about the adoption of robots and their labor market

effects. Therefore, I can introduce novel aspects of robot supply within established

frameworks for the demand side (Graetz and Michaels, 2018; Acemoglu and Restrepo,

2018, 2020; Hémous and Olsen, 2022).

I offer two contributions. First, I gather new data about MNEs supplying robots

in the global economy. Second, I provide a quantitative general equilibrium model

to evaluate how their responses shape the effects of policies targeting robot adoption,

such as taxes. Using the model, I find that supply-side responses amplify the aggregate

and distributional outcomes of these policies by about 20% and transmit their effects

internationally. I also study interventions that aim at boosting competition among

robot sellers, and show that they generate a trade-off between efficiency and equity.

1I study industrial robots, defined by the International Organization for Standardization as “au-
tomatically controlled, reprogrammable multipurpose manipulators”. See Section 2 for more details.
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A feature of the robot industry is that sales entail a bundle of generic robot arms and

“integration services”. These services, including customization and setup, are meant

to tailor pre-built robots to specific production tasks and account for two-thirds of the

final price paid by users (Leigh and Kraft, 2018). While generic robots are tradable,

integration services are not. Therefore, robot sellers must establish a retail network in

each market they serve. This industry feature informs my data collection procedure

and guides the assumptions of the model I provide.

The data come from various sources. From the list of members of the International

Federation of Robotics (IFR), I identify the MNEs that produce and sell industrial

robots. Information about the location of their headquarters (HQ), financial accounts,

and ownership structure comes from the Bureau van Dijk’s Orbis dataset. By scraping

the website of each MNE, I also geolocate their branches that sell generic robots and

integration services to users worldwide. I retrieve over 600 sales branches in total.

About 90% of them are in Orbis. Countries’ characteristics, such as the number of

robots adopted, market size, and trade flows, come from commonly used data sources.

The final dataset is a cross-section of 10 multinational robot sellers and 45 countries,

pooling information between 2019 and 2021. These 10 multinational robot sellers have

HQ mainly in Japan and central Europe and account for about 90% of global robot

sales. The 45 countries I consider account for more than 90% of world GDP.

Using these data, I document two new facts about the global robot industry. First,

robot sales decrease as the distance between destination countries and the robot sellers’

HQ increases. This fact suggests that multinational robot sellers face bilateral frictions

that increase with distance from their HQ, which is consistent with gravity.2 An

implication of gravity is that local shocks disproportionally affect foreign robot sellers.

Second, robot sales in destination countries are highly concentrated, with only half

of all robot sellers serving the average country in the data. This granularity in sales

means that marginal changes in the number of robot sellers active in a market deliver

sizable changes in the number of robots adopted.

These facts inform, and are replicated by, a multi-country general equilibrium model

featuring oligopolistic multinational robot sellers. Each market consists of households

and perfectly competitive final goods producers. Households buy final goods and supply

either routine or non-routine labor inelastically. Firms use robots and both types

of labor to produce final goods. As in Acemoglu and Restrepo (2018), robots are

2Several factors may explain the existence of these frictions, including home bias in robot demand,
robot sellers’ limited knowledge of foreign markets, or coordination costs increasing with distance.
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substitutes to routine workers and complements to non-routine ones. Final goods are

traded internationally subject to iceberg trade costs, creating linkages across markets.

Robot supply is modeled following the literature on oligopoly in international trade

(Atkeson and Burstein, 2008; Gaubert and Itskhoki, 2021). It has two key features.

First, upon paying an entry cost, robot sellers can serve multiple markets. Second,

within each market, they compete to sell an indivisible bundle of generic robots and

integration services to users. This bundle, which I refer to as a “product”, is consid-

ered non-tradable and produced in destination markets using non-routine local labor.3

Robot sellers are heterogeneous in terms of appeal to final goods producers. More

appealing robot sellers enter more markets and charge higher markups.

Bringing the model to the data requires defining the markets in which robot sellers

compete. In practice, I group 45 countries into 12 markets based on geographical

proximity. The structural parameters of the model must also be determined. The

households’ and final goods producers’ parameters are standard and can be calibrated

from the data or existing literature. The robot sellers’ parameters are new, and I

estimate them using a simulated method of moments (SMM) procedure.

The SMM estimator targets moments that are informative of robot sellers’ entry

choices and sales, market competition, and robot adoption. It recovers the mean and

standard deviation of the appeal distribution across robot sellers, the cost of entering

markets, and the elasticity of substitution between the different products offered by

robot sellers. While jointly estimated, each parameter is intuitively informed by specific

targeted moments, which are accurately replicated. I validate the model by showing

that it matches untargeted seller and market-level moments.

I use the model to assess how robot sellers respond to currently discussed policy

interventions targeting robot adoption and quantify the impact of their responses on

various outcomes. I examine the implementation of an EU-wide value-added robot tax

paid by robot adopters. This policy was discussed by the European Parliament in 2017

as part of a law to protect workers exposed to automation, and it has prompted exten-

sive research on the taxation of automation technology (Thuemmel, 2022; Guerreiro,

Rebelo and Teles, 2022; Costinot and Werning, 2023). I consider a 5% tax, in line with

the short-run optimal robot tax rate estimated for the US by Guerreiro et al. (2022).

I explore two scenarios. In the first, in line with the existing literature, robot sellers

3This assumption allows me to abstract from the proximity-concentration trade-off in the produc-
tion of generic robots and analyze competition in destination markets. It is supported by the fact
that robot prices are determined by integration services supplied locally (Leigh and Kraft, 2018).
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cannot adjust market entry choices and markups after the tax is introduced. In the

second, they can adjust along both margins. Without supply-side responses, a tax

reduces robot demand and increases the price of final goods, generating an output loss

in the EU. However, losses are not evenly borne. Income inequality decreases, with

routine workers experiencing an increase in welfare because of their substitutability

with robots, and non-routine workers facing a welfare loss due to their complementarity.

In the second scenario, a tax shrinks the total size of the market, and some robot

sellers leave the EU. Exit induces a reallocation of market shares to incumbents, who

raise their markups, leading to a stronger increase in the price of robots and a larger

output loss than in the first case. Income inequality decreases by more than in the first

scenario, with smaller welfare gains accruing to routine workers and stronger welfare

losses for non-routine ones. Overall, I find that supply-side responses reinforce the

aggregate and distributional effects of a tax on robot adoption by about 20%.

Because of gravity in robot sales, an EU-wide tax disproportionally affects robot

sellers headquartered outside the EU, who experience higher exit rates, effectively

making the tax a protectionist measure from the perspective of the EU. By increasing

the price of EU goods, an EU-wide robot tax also increases consumer prices and reduces

the welfare of all households beyond the EU. These results are robust to using different

tax rates and alternative market structure assumptions.

The model can be also used to evaluate a rich set of additional policies, including

those directly targeting supply. Recent literature has highlighted that firms’ market

power, even if confined to specific sectors, can have detrimental welfare effects (Ed-

mond, Midrigan and Xu, 2023). These concerns are relevant for the robot industry

given its high level of concentration. In light of this debate, I investigate what are

the effects of promoting competition among robot sellers. Counterfactual results show

that increased competition reduces markups and prices, raising final goods production.

If the pro-competitive effects of policy interventions are strong enough, all types of

workers can be made better off. However, the non-neutrality of robots implies that

non-routine workers experience disproportionally larger gains.

Related Literature. At its core, this paper contributes to the literature on quan-

titative models of MNEs’ activities (e.g., Irarrazabal, Moxnes and Opromolla, 2013;

Ramondo and Rodŕıguez-Clare, 2013; Ramondo, 2014; Tintelnot, 2017; Antràs, Fort

and Tintelnot, 2017; Arkolakis, Ramondo, Rodŕıguez-Clare and Yeaple, 2018; Alviarez,
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2019; Head and Mayer, 2019). From a theoretical perspective, it offers two contribu-

tions. First, instead of focusing on horizontal, vertical, or export-platform foreign

direct investment (FDI), this paper provides a model of distribution FDI tailored to

the robot industry. Second, it relaxes the conventional assumption of monopolistic

competition among MNEs, allowing for oligopolistic competition. From an empirical

standpoint, this work introduces new data on MNEs in the robot industry.

This paper also contributes to the literature on oligopoly in international trade (e.g.,

Markusen, 1981; Brander and Krugman, 1983; Brander and Spencer, 1985; Atkeson

and Burstein, 2008; Edmond, Midrigan and Xu, 2015; Neary, 2016; Parenti, 2018;

Gaubert and Itskhoki, 2021; Impullitti, Licandro and Rendahl, 2022; Crowley, Han

and Prayer, 2024). While the existing literature focuses on how imperfect competition

between firms shapes international trade patterns and interacts with trade policy, this

paper presents evidence of how firms’ strategic behaviors and influence the outcomes

of regulations beyond trade policy.

By documenting how a few firms dominate the global robot industry, this paper also

connects with the literature on global market power (e.g., De Loecker and Eeckhout,

2018; De Loecker, Eeckhout and Unger, 2020; Alviarez, Head and Mayer, 2020; Autor,

Dorn, Katz, Patterson and Van Reenen, 2020; Leone, Macchiavello and Reed, 2023).

Properly adapted, the model developed in this paper can be used to assess the role of

market power in transmitting shocks in other globally concentrated input markets.

Finally, this paper contributes to the literature on the effects of automation tech-

nology (e.g., Acemoglu and Restrepo, 2018; Graetz and Michaels, 2018; Bessen, Goos,

Salomons and Van den Berge, 2019; Acemoglu and Restrepo, 2020; Acemoglu, Lelarge

and Restrepo, 2020; Koch, Manuylov and Smolka, 2021; Aghion, Antonin, Bunel and

Jaravel, 2020; Dauth, Findeisen, Suedekum and Woessner, 2021; Hubmer and Re-

strepo, 2021; Hémous and Olsen, 2022; Acemoglu, Koster and Ozgen, 2023) and the

implications of policies targeting automation (e.g., Humlum, 2021; Beraja and Zorzi,

2022; Thuemmel, 2022; Guerreiro et al., 2022; Costinot and Werning, 2023). The main

contribution is highlighting the role of market structure on the supply side in shaping

the outcomes of policies favoring or constraining automation technology.

The paper unfolds as follows. Section 2 provides information about the global robot

industry. Section 3 introduces the data. Section 4 describes the empirical facts. Section

5 contains the model. Section 6 discusses model estimation. Section 7 shows the effects

of a robot tax. Section 8 presents additional counterfactuals. Section 9 concludes.
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2 Industry Background

This section provides background information about robots and the robot industry.

2.1 Industrial Robots

Industrial robots (henceforth robots) are defined by the International Organization

for Standardization (ISO) as “automatically controlled, reprogrammable multipurpose

manipulators, programmable in three or more axes, which can be either fixed in place

or mobile for use in industrial automation applications” (ISO 8372:2012). The Inter-

national Federation of Robotics (IFR), a non-profit organization that represents robot

sellers, national producers’ associations, and research institutes around the world, re-

marks that the ability to perform different tasks without any human supervision is the

main feature of these machines (International Federation of Robotics, 2020). Using

data between 1990 and 2007 on US labor markets, Acemoglu and Restrepo (2020)

document that autonomy makes robots more substitutable for workers in routine oc-

cupations compared to computers and other automation technology.

Robots belong to six different types (articulated, cartesian, cylindrical, spherical,

parallel, and SCARA—Selective Compliance Assembly Robot Arm) mainly differing

in terms of number of arms and payload. Notwithstanding, they are classified as

relatively homogenous goods at the factory gate. There is a single six-digit HS code

associated with robots (847950), and the same holds true in the US ten-digit HTS

product classification, the most disaggregated one in international trade data. For

comparison, another product for which these product classifications coincide is white

portland cement. By contrast, within the six-digit code associated with “durum wheat

(excluding seed for sowing)” (100119) there are four 10-digit HTS varieties.

2.2 The Global Robot Industry

The global robot industry is organized along three main stages: production, integra-

tion, and adoption (see Figure A.1). Japan assembles nearly half of the world’s new

robots each year. Other major production centers are China, Germany, Italy, South

Korea, and the US (International Federation of Robotics, 2020). More details regard-

ing the locations where robots are produced and the technological requirements of the

production process are in Appendices C.1 and C.2, respectively.
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In the early 1990s, industrial robots were mostly employed in the automotive indus-

try. However, over the last 20 years, their adoption has grown across other manufac-

turing sectors, such as chemicals, electronics, pharmaceuticals, and even agriculture.

Overall, their global stock has increased fivefold. China, Germany, Japan, South Korea,

and the US are the major destination markets for robots (International Federation of

Robotics, 2020). Robot adopters tend to be large manufacturing companies (Acemoglu

et al., 2020), often active in multiple countries (Leone, 2023).

The integration stage is a key feature of the industry. Robots are sophisticated

machines, and their adoption is associated with a broader restructuring of produc-

tion (Koch et al., 2021). Besides the factory-gate generic robot, users also purchase

“integration services” from sellers. These services involve guidance in selecting the

appropriate automation solution, product customization to adapt a generic robot to

a specific production task, and post-sale support like installation, replacement, and

ongoing maintenance. Appendix C.3 provides examples based on case studies avail-

able from the robot sellers’ websites. Leigh and Kraft (2018) estimate that integration

services account for about two-thirds of the final price paid by users.

The bundling of robots and integration services is crucial. While generic robots

are tradable, integration services require proximity to final demand. Therefore, sellers

must establish a retail network of branches in each market they serve, regardless of

where production facilities are located.

3 Data

This section presents new data about robot sales and the additional data sources.

3.1 Multinational Robot Sellers

Identity. I obtain a list of robot sellers using the directory of members of the IFR.

The original directory contains 85 members. Among them, there are 26 firms that

produce and sell robots. The remaining members are either national associations or

research institutes. To identify industry leaders, I resort to business-related sources

and the Bureau van Dijk’s Orbis dataset, proceeding in two steps. First, I search for

these 26 firms in magazines discussing trends in the industrial robot sector. Second,

I select the companies that consistently emerge as industry leaders across searches.

The final list includes ABB, Comau, Epson, Fanuc, Kawasaki, Kuka, Nachi-Fujikoshi,
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Omron, Staubli, and Yaskawa. Using Orbis, I verify that these 10 sellers account for

approximately 90% of the global market share.4 Among them, ABB, Fanuc, Kuka, and

Yaskawa alone hold approximately 54% of the global market share, as shown in Figure

A.2. These concentration patterns align with existing industry reports (UBS, 2020).5

Characteristics. I gather several characteristics of robot sellers from Orbis, includ-

ing information about financial accounts (e.g., sales, employment, total fixed assets,

and R&D expenses), sectors of activity, ownership structure, and innovation. Own-

ership information encompasses details about sellers’ shareholders and the location

of sellers’ headquarters (HQ). Additionally, it includes the location, sectors of activ-

ity, and financial accounts of all sellers’ subsidiaries, even those unrelated to robots.

All firms are MNEs with subsidiaries in multiple countries. Using Orbis Intellectual

Property, I also collect information about robot-related patents. Among the 26 sellers

registered with the IFR, the top 10 accounting for 90% of global sales also hold 81%

of the global stock of robot-related patents. See Appendix C.2 for more details.

Global Sales Network. Section 2.2 emphasizes that robot sellers need a retail net-

work in each market to provide integration services to their customers. Unfortunately,

information about retail networks cannot always be obtained from Orbis for two rea-

sons. First, Orbis only links branches to sellers if they share a common owner (usually

the multinational seller itself). However, business-related case studies available on the

robot sellers’ websites suggest that some branches may also function as franchises. Sec-

ond, even among affiliates, branches that supply robots and integration services cannot

be unambiguously identified when information about their sector of activity is missing

from Orbis.

To address this limitation, I create a web scraping algorithm to retrieve information

about branches supplying robots and integration services directly from the websites of

the top 10 robot sellers. The algorithm works in two steps. First, it navigates to

the “Where to find us” section of each seller’s website, where a list of retail branches

4This share refers to 2021 but it is stable over time. Because Orbis does not report turnover by
sector, I compute global market shares using sellers’ total turnover. Since automation provision is the
primary activity of these firms, their total sales are an accurate proxy for their size in the industry.
This is not the case for other automation sectors. For example, Amazon and Microsoft dominate cloud
computing services, but their total sales in Orbis likely reflect income from their other main activities.
This makes the robot industry appealing to study market structure in the automation sector.

5For reference, Figure A.3 shows that firms in the robot industry are relatively small compared to
leading companies in other sectors, such as cars, smartphones, semiconductors, and computers.
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across the world is provided. Second, it extracts and stores the name and geographical

location of each branch. Figure A.4 illustrates two examples of the online information

retrieved. The first branch is a subsidiary of Kuka, while the second is a franchise selling

ABB robots. Appendix D.1 provides additional information about the algorithm.

Using this procedure, I identify 603 sales branches located in multiple countries,

which are shown in Figure A.5. Among all branches, 538 (89%) can be found in

Orbis, and I collect information about their financial accounts and corporate structure.

Ownership details are available for 409 (75%) branches. Approximately 65% of them

are subsidiaries. The remaining 35% are franchises. However, since each franchise is

only listed on a single robot seller’s website, I do not distinguish between branches

owned by sellers and those operating at arm’s length.

Market Shares. I measure the market share of a seller in each market using its share

of branches in that market. This choice is motivated by the importance of physical

proximity to end-users for sales, and rests on the assumption that robot sellers with

more local branches have higher sales. In Appendix D.2, I provide evidence in support

of this assumption using Orbis information about branch-level sales data.6 I prefer the

definition of market shares based on branches over the one based on sales because the

latter cannot always be defined due to missing information in Orbis. I defer a formal

treatment of the relevant markets in which sellers compete until Section 6.

3.2 Additional Data Sources

Robot Adoption. Data about robot adoption come from the IFR, which aggregates

cross-country firm-level information and computes the number of robots used in every

country by industry (roughly matching the NACE4 classification) and year. These

data are considered as very reliable and have been extensively used in previous research

(Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Dauth et al., 2021).

International Trade. Information about bilateral trade flows between countries by

industry (ISIC Review 4) is obtained from the World Input-Output Tables (WIOT).

Bilateral trade flows by specific goods (HS6 classification) come from the CEPII BACI

dataset. These data also report the value and quantity of trade in robots.

6In Appendix E.1, I extend the model in Section 5 to provide a micro-foundation for the positive
correlation between robot sellers’ number of branches and sales in a market.
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To complement the trade data, I collect bilateral information about physical and

cultural distance between countries. Physical distance, measured as the distance be-

tween the two most populated cities of a country pair in kilometers, comes from the

CEPII gravity database. Cultural distance, measured as the probability that two ran-

dom individuals in two countries speak the same language, comes from Gurevich, Her-

man, Toubal and Yotov (2021). I obtain information on bilateral trade costs, computed

using the method developed by Novy (2013), from the ESCAP-World Bank Trade Cost

Database.

Country Characteristics. Information about the characteristics of the countries

served by robot sellers come from various sources. From the World Development Indi-

cators (WDI) database of the World Bank, I collect information about GDP (in 2010

USD PPP), total population, employment, value added by industry, and land area.

The geographical coordinates of each country come from the CEPII gravity database.

Information about market access, computed using the method developed by Redding

and Venables (2004), is obtained from the CEPII Market Potentials Database.

3.3 Final Sample

Summary Statistics. The matched dataset is a cross-section of 10 multinational

robot sellers and 45 countries, accounting for 90% of total robot sales and global GDP.

Information about sellers and their branches is relative to 2021. Information from

other data sources refers to 2019, except for the CEPII Market Potentials and WIOT

databases, whose latest available years are 2004 and 2014, respectively.

Table 1 shows that there is substantial variation in multinational robot sellers’

market entry choices and sales. For instance, Kuka and Yaskawa enter 41 and 27

countries, with an average of 2.80 and 1.44 branches per country, respectively. On the

other hand, ABB and Fanuc serve fewer countries, 17 and 16 respectively, but have a

higher average number of branches, 7.59 and 4.38 respectively. In general, the top 4

multinational robot sellers serve more countries and have higher market shares than

the others, as shown in Figure A.6.

Sellers serve different countries in terms of distance from their HQ. There is also

substantial dispersion in their total sales. This heterogeneity will ultimately inform

the structural parameters of the model governing the decisions of robot sellers.
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Table 1. Summary Statistics

Name HQ No. Countries No. Branches Log Dist. from HQ Log Sales

ABB CH 17 7.59 8.39 10.36

Fanuc JP 16 4.38 8.98 8.70

Yaskawa JP 27 1.44 9.04 8.33

Kuka DE 41 2.80 8.48 8.23

Kawasaki JP 12 2.33 8.84 9.41

Epson JP 8 4.00 9.59 9.13

Omron JP 23 2.30 8.97 8.74

Nachi-Fujikoshi JP 16 3.69 8.91 7.61

Staubli CH 31 1.23 8.45 5.70

Comau IT 23 1.74 8.35 5.54

Note: The table shows summary statistics for each of the top 10 multinational robot sellers. HQ is the robot
sellers’ HQ country. No. Countries is the number of countries that robot sellers serve. No. Branches is the average
number of branches that robot sellers operate in the countries they serve. Log Dist. from HQ is the log of the
average distance between the two most populated cities of the robot sellers’ HQ and served destination countries in
kilometers. Log Sales is the log of robot sellers’ total revenues in million USD.

Data Validation. While the 10 robot sellers I focus on dominate the industry, there

may be concerns regarding the procedure used to construct their sales network. For

instance, omissions in online listings or misclassification of sales branches could intro-

duce measurement error. To mitigate these concerns, I show that the self-collected

information about global sales networks is consistent with other established sources.

First, there is a 75% correlation between the number of sales branches and robots

used, as reported by the IFR, at the country level. The correlation stays unchanged

even after controlling for market size. Second, there is a 77% correlation between the

number of branches that sellers headquartered in country o open in country d and the

export value of robots from o to d, as reported in the BACI dataset. The correlation

is robust to controlling for origin and destination fixed effects, as well as the distance

between country pairs. This result corroborates the argument made in Section 2.2 that

robot sales are mediated by local branches, with limited scope for direct imports from

countries where production takes place.

Last, there is a 48% correlation between whether sellers have a branch in a country

and whether they have other subsidiaries in that country (including those unrelated

to robots), as reported in Orbis. The correlation is robust to controlling for seller and

country fixed effects, suggesting that robot sales positively correlate with other multi-

national sellers’ activities. See Appendix D.3 for more details about data validation.
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4 Empirical Facts

This section documents novel facts about the robot industry and their implications.

4.1 Gravity

Fact 1. Robot sellers’ entry choices and sales follow gravity.

I establish this fact by estimating the following equation:

ys(o)d = βLog Distance from HQs(o)d + δControlss,d + εs(o)d. (1)

ys(o)d is either a binary variable equal to 1 if seller s headquartered in country o has at

least one branch in country d or the market share of seller s in country d (conditional

on entry). Log Distance from HQs(o)d is the log distance between the sellers’ HQ and

destination countries in kilometers. Controlss,d includes seller and country fixed effects,

while εs(o)d is the error term. Identification comes from within-seller variation after

controlling for any country-level characteristics. Figure 1 shows the predicted values

of equation (1).

Figure 1. The Gravity of Market Entry and Market Shares

Note: The left panel plots the predicted entry probability of robot seller s in country d as a function
of the log distance between the two most populated cities of the seller’s HQ and destination country
in kilometers. The right panel plots the predicted market share of seller s in country d as a function
of the same log distance. All variables are shown after partialling out seller and country fixed effects.
I standardize log distance to have zero mean and unit variance in the sample, and I plot the predicted
values over its [−1, 1] interval. Equation (1) is estimated via OLS.

The first column of Table B.1 indicates that a one-unit standard deviation increase
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in the log distance from the sellers’ HQ reduces the probability of entry by about 13

percentage points (p.p.), corresponding to a 28% reduction relative to the unconditional

entry probability in the sample. Such an increase in distance also reduces market shares

by about 3.8 p.p., corresponding to an 18% reduction relative to the average market

share in the sample, as shown in the third column. The results are robust to using a

cultural measure of bilateral proximity, as shown in the second and fourth columns.

Overall, there is evidence that multinational robot sellers face bilateral frictions at

the extensive and intensive margins that increase with distance from their HQ, which is

consistent with gravity.7 Several factors may underlie these frictions, including home

bias in robot demand, robot sellers’ limited knowledge of the needs of adopters in

distant countries, or coordination costs increasing with distance from the HQ.

Implication of Fact 1. Local shocks disproportionally affect foreign robot sellers.

An implication of gravity is that demand shocks in any given country disproportionally

affect robot sellers coming from more distant origins. To document this heterogeneity,

I estimate the following equation:

E[No. Sellersod] = exp [αLog Distance from HQod + βRemotenessd

+ γ(Log Distance from HQod × Remotenessd)

+ δControlso,d] . (2)

No. Sellersod is the number of robot sellers headquartered in country o that have at

least one branch in country d. Log Distance from HQod is the log distance between

the sellers’ HQ and destination countries in kilometers. Remotenessd is the inverse of

the market access measure developed by Redding and Venables (2004), and captures

demand in each country divided by the cost of reaching that country. A higher value

implies a smaller market access and, therefore, is expected to reduce the number of

active robot sellers.8 Controlso,d includes origin fixed effects, bilateral controls (i.e.,

same-continent indicator and cultural proximity), and, depending on the specification,

either destination country fixed effects or destination country-level controls (i.e., GDP

per capita, population, and total land area).

7Gravity is a strong empirical regularity for trade flows (Head and Mayer, 2014) and MNEs’
activities (Keller and Yeaple, 2013; Antràs and Yeaple, 2014; Gumpert, 2018). It is reassuring that
well-known facts about multinational activity continue to hold in a previously unexplored sector.

8This variable is measured by CEPII in 2004. Thus, it is not affected by entry patterns in the
robot industry in my sample, which refer to 2021.
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I estimate equation (2) on a balanced sample at the bilateral level to account for

the extensive and intensive margins of robot sellers’ entry. Identification comes from

bilateral variation after controlling for origin and destination-level characteristics.

Table B.2 reports the estimation results. Consistently with Table B.1, the number of

robot sellers operating in a country diminishes as the distance from their HQ increases.

As expected, reducing market access leads to a reduction in the number of active sellers.

The negative and statistically significant coefficient associated with the interaction

term highlights the main implication of gravity: negative shocks to market access

disproportionally reduce the number of robot sellers coming from more distant origins.

Figure 2 visualizes the estimates of the second column of Table B.2 for a specific set

of countries. It shows the predicted number of robot sellers with HQ in Asia or Europe

active in the UK against the UK’s remoteness. A vertical dotted line denotes the actual

remoteness value of the UK, while the horizontal dotted lines indicate the presence of

three Asian and four European robot sellers, respectively. The blue and black dashed

lines illustrate how the number of Asian and European robot sellers changes if market

access decreases in the UK. A drop in market access reduces the number of robot sellers

from both origins. However, the reduction is stronger among Asian robot sellers.

Figure 2. The Implications of Gravity

Note: The figure plots the predicted number of robot sellers active in the UK as a function of
remoteness in the UK. The vertical dotted line denotes the actual remoteness value of the UK, while
the horizontal dotted lines indicate the presence of three Asian and four European robot sellers. The
blue dashed line refers to robot sellers with HQ in Asia (i.e., Japan). The black dashed line refers
to robot sellers with HQ in the EU (i.e., Germany, Italy, or Switzerland). I standardize remoteness
to have zero mean and unit variance in the sample. Equation (2) is estimated via Pseudo-Poisson
Maximum Likelihood (PPML).
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4.2 Granularity

Fact 2. Robot sales in destination countries are highly concentrated.

I establish this fact by estimating the following equation:

yd = α + βLog Market Sized + εd. (3)

yd is either the total number of robot sellers active in country d or the Herfind-

ahl–Hirschman Index (HHI) in that country.9 Market size of country d is approximated

by its log GDP (in 2010 USD PPP). εd is the error term. The parameter β captures

the marginal change in yd as market size increases. I standardize log GDP to have

zero mean and unit variance in the sample. Therefore, α indicates the number of robot

sellers or HHI in the average country in terms of size. Figure 3 shows the predicted

values of equation (3).

Figure 3. Concentration and Market Size

Note: The left panel plots the predicted number of robot sellers in country d as a function of the
log GDP of country d. The right panel plots the predicted HHI in country d as a function of the log
GDP of country d. I standardize log GDP to have zero mean and unit variance in the sample, and I
plot the predicted values over its [−1, 1] interval. Equation (3) is estimated via OLS.

As shown by the first two columns of Table B.3, the average country in terms of

market size hosts about 5 robot sellers, corresponding to an HHI of about 34%. It is

9I define HHId =
∑

s∈Sd
s2sd, being ssd the market share of robot seller s in country d and Sd the

set of robot sellers active in country d. This HHI definition implies that each country is a market in
which sellers compete. Although this is reasonable for some countries, it may be inadequate for small
ones belonging to the same economic or geographical areas. In Section 6, I propose a definition of
markets that addresses this issue.
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useful to resort to the Horizontal Merger Guidelines of the Federal Trade Commission

(FTC) to interpret these numbers. The FTC classifies markets into “unconcentrated”

(HHI < 15%), “moderately concentrated” (15% ≤ HHI ≤ 25%), and “highly concen-

trated” (HHI > 25%). The fact that the HHI in the average sample country falls in

the third category supports the hypothesis that robot sellers have market power. As

expected, larger markets host more robot sellers and, therefore, are more competitive,

as shown in the last two columns of Table B.3.

Implication of Fact 2. Marginal changes in the number of robot sellers deliver sizable

changes in robot adoption.

Unlike under perfect competition, granularity suggests that marginal changes in the

number of robot sellers active in a country have a non-negligible impact on the quantity

of robots adopted. To test this hypothesis, I estimate the following equation:

Log(1 + New Installmentsd) = α + βLog Number of Sellersd + δControlsd + εd. (4)

New Installmentsd is new robot installments in country d in 2019.10 The variable

Log Number of Sellersd is the log number of robot sellers active in country d. Controlsd

includes market size (i.e., GDP per capita and population) and geographical location

(i.e., latitude and longitude) controls. εd is the error term. The parameter β measures

the elasticity of robot adoption to the number of robot sellers.

Estimating equation (4) via OLS is likely subject to bias, as robot sellers may

locate in countries with higher or lower robot investment to begin with. To mitigate

endogeneity concerns, I instrument the log number of robot sellers in country d with

the total inverse distance (in logs) of country d from the robot sellers’ HQ countries.

This instrumental variable aims to capture exogenous changes in the frictions that

robot sellers from any origin face when entering country d. As shown by Table B.1,

reducing these frictions encourages market entry. Conditional on the included controls,

identification relies on the (exclusion restriction) assumption that reducing frictions

between country d and the robot sellers’ HQ countries solely influences robot adoption

by increasing the number of robot sellers in country d. As explained in Section 2.2,

10This variable is computed by the IFR as the difference between the stock of robots in 2019 and
2018 in each country. Since there are no new installments in 10 countries out of 45 in my sample in
2019, I use the log of one plus new installments to avoid losing observations. Table B.8 shows that
the results are robust to using a PPML estimator with a control function approach to account for
endogeneity.
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robot sales require physical proximity between robot adopters to sellers. Therefore,

alternative channels that might pose concerns in other industries (e.g., direct imports

from HQ countries) are less relevant in the robot industry.11

A separate concern with distance-based instruments, like the one proposed here, is

their correlation with a country’s distance from the equator, which is associated with

inferior institutions and lower investment levels in general (Rodriguez and Rodrik, 2000;

Feyrer, 2019). Equation (4) includes controls for GDP per capita and geographical

location to address these concerns.

Figure 4 shows the predicted values of the first and second stages of equation (4).

Figure 4. Robot Adoption and Robot Sellers

Note: The left panel plots the (first-stage) predicted log number of robot sellers in country d as a
function of the total inverse log distance of country d from the robot sellers’ HQ countries, which is
the instrumental variable (IV). The right panel plots the (second-stage) predicted log (of one plus
the) number of new robot installments in country d as a function of the log number of sellers in that
country. Blue lines show fitted values of OLS regressions. The black line indicates the fitted value of
the IV regression. All variables are shown after partialling out the controls included in equation (4).
When plotting the IV fitted values, the actual log number of robot sellers in the data is the replaced
with the one predicted by the first-stage regression.

The first column of Table B.4 presents the first-stage estimates. As expected,

the instrument is positively and significantly correlated with the log number of robot

sellers, confirming that reducing frictions between country d and the robot sellers’ HQ

countries increases the number of incumbents in country d. This result is robust to

the inclusion of country-level controls, as shown in the second column. The second

11To reinforce this argument, Table D.3 shows that bilateral variation in the number of sellers’
branches explains two-thirds of the variation of trade in robots in the data even after controlling for
bilateral distance and origin and destination-country fixed effects.
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and third columns report the second-stage OLS estimates, which indicate a positive

correlation between new robot installments and the number of active robot sellers in

a country. The last two columns show the second-stage IV estimates, which are not

statistically different from the OLS ones. The value of the first-stage Kleibergen-Paap

statistics well above 10 confirms the relevance of the instrument.

According to the final column of Table B.4, a one percent rise in the number of

active robot sellers in a country corresponds to a 4.7% increase in robot installations.

In absolute terms, the entry of one new robot seller in the average country results

in approximately 77 new robot installations, corresponding to a 5% increase relative

to the median number of robot installations in the data. Overall, Table B.4 provides

evidence in support of the notion that robot adoption is sensitive to changes in the

number of robot sellers.

This result is robust to using alternative instruments, estimation samples, outcome

variables, and estimators. Table B.5 replaces the baseline IV with instruments derived

from the fitted values of gravity regressions with different set of controls akin to Feyrer

(2019). The interpretation of these alternative instruments aligns with that of the base-

line one. Table B.6 replicates Table B.4 while excluding the top five markets for robots

(i.e., China, Germany, Japan, South Korea, and the US) from the estimation sample.

Table B.7 measures robot adoption with the log of robot imports (HS 847950) rather

than new installments. Table B.8 presents the results of the Pseudo-Poisson Maximum

Likelihood (PPML) estimator combined with a control function (CF) approach.12 This

final robustness test shows that the baseline results are not driven by the use of the

“log of one plus” transformation of the outcome variable (Chen and Roth, 2024).

4.3 Taking Stock of the Empirical Facts

This section documents two novel facts about the global robot industry: (i) gravity in

robot sellers’ entry choices and sales and (ii) granularity in robot sales in destination

countries. An implication of gravity is that local shocks disproportionally affect foreign

robot sellers. An implication of granularity is that marginal changes in the number of

robot sellers active in a market deliver non-negligible changes in the number of robots

adopted. These facts inspire, and are replicated by, the model introduced in Section 5.

12The first stage is the same as in Table B.4. However, while the IV estimator replaces the endoge-
nous variable with its first-stage fitted values, the CF approach entails adding the first-stage residuals
alongside the endogenous variable in the second stage. See Wooldridge (2015) for more details.
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5 Theoretical Framework

This section provides a general equilibrium multi-country model that incorporates the

features of the robot industry described thus far.

5.1 Economic Environment

Set Up. The global economy consists ofM markets, denoted by o (origin) or d (des-

tination). Each market consists of households and final goods producers. Households

buy final goods and supply either routine (r) or non-routine (n) labor inelastically.

Final goods, produced by perfectly competitive firms using robots and both types of

labor, are sold domestically or abroad.

There exists a set of S multinational robot sellers, each denoted by s. Robot sellers

differ in terms of their appeal to final goods producers. This source of heterogeneity

generates gravity in robot sales, as per Section 4.1. To account for granularity, as per

Section 4.2, I let robot sellers compete oligopolistically within the robot industry.

There are two stages. In the first, after observing market entry costs, robot sellers

decide which markets to serve. In the second, conditional on entry, sellers compete to

sell robots to local final goods producers. I denote Ms ⊆ M the set of markets that

s enters and Sd ⊆ S the set of active sellers in a market. The sets Sd and Ms are

determined in equilibrium, whereas S and M are exogenously given.

In equilibrium, robot sellers generate profits. Following the approach of Chaney

(2008), I assume that these profits are distributed among households in proportion to

their labor income.

Households’ Preferences. The utility of households i ∈ {r, n} in market d reads:

Cd(i) =

(∑
o∈M

Cod(i)
θ−1
θ

) θ
θ−1

, θ > 1. (5)

Cod(i) denotes the consumption level of final goods originating from o that households

of type i consume in d. The parameter θ is the elasticity of substitution across goods.

The disposable income of households of type i is:

Ed(i) = wd(i)L̄d(i) + sd(i)Π, sd(i) =
wd(i)L̄d(i)∑

d∈M
∑

i∈{n,r}wd(i)L̄d(i)
. (6)
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wd(i) denotes the market wage of households of type i and L̄d(i) is their exogenous

labor supply. Households also receive a share sd(i) of robot sellers’ profits, denoted by

Π, proportionally to their labor income. The welfare of households of type i is:

Wd =
Ed(i)

Pd
. (7)

Pd denotes the consumer price index in market d.

Final Goods Production. To produce final goods, perfectly competitive firms com-

bine robots Rd, routine workers Ld(r), and non-routine workers Ld(n). Rd is a substi-

tute of Ld(r) and a complement to Ld(n). Final goods are produced using technology:

Yd = AdX
β
dLd(n)1−β, Xd = (Rη

d + Ld(r)
η)

1
η , β ∈ (0, 1), η ∈ (0, 1]. (8)

Ad denotes total factor productivity. The elasticity of substitution between Rd and

Ld(r) is 1/(1−η). Following Guerreiro et al. (2022), Appendix E.2 shows that equation

(8) can be derived from a task-based model as in Acemoglu and Restrepo (2018). The

income share accruing to non-routine labor is 1− β.

The Robot Industry. Multinational robot sellers make two decisions. First, upon

paying an entry cost in terms of local non-routine labor, they choose which markets

to serve. These costs capture, among others, the cost of setting up branches. Second,

conditional on entry, sellers compete to sell an indivisible bundle of generic robots and

integration services to final goods producers.

The bundle offered by seller s in market d is called a “product” and denoted by

Rsd. This bundle is considered non-tradable and produced in the destination market

using local non-routine labor.13 Final goods producers in each market combine robot

sellers’ products as:

Rd =

(∑
s∈Sd

φ
1
σ
sdR

σ−1
σ

sd

) σ
σ−1

, σ > 1. (9)

Robot sellers are horizontally and vertically differentiated. Horizontal differentiation

stems, among others, from the fact that sellers have their own brand and may open

13In Appendix E.3, I extend the model and allow generic robots to be produced in one market and
exported to another, where they are sold bundled with integration services.
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branches in different locations within a market. The elasticity of substitution between

the products that they sell is σ.

The source of vertical differentiation is φsd, a demand shifter reflecting the appeal of

robot sellers to final goods producers. In Section 6, I will assume that demand shifters

are drawn from a log-normal distribution. Since demand shifters are seller-by-market

specific, robot sellers are allowed to be more attractive in some markets (e.g., the HQ

market) compared to others (e.g., markets distant from the HQ). Thus, φsd flexibly

captures several frictions that are consistent with gravity, such as home bias in robot

demand, the limited knowledge of distant markets by robot sellers, or the presence of

coordination costs that increase with distance from the HQ.14

Robot sellers compete oligopolistically à la Bertrand in each market.15 As is stan-

dard in the literature of oligopoly in general equilibrium (e.g., Atkeson and Burstein,

2008; Gaubert and Itskhoki, 2021), robot sellers take into account the effects of their

choices on their market shares and those of their competitors, but not on economy-wide

variables. Robot sellers’ gross and net profits are, respectively:

π̄sd = (rsd − wd(n))Rsd and πsd = π̄sd − wd(n)f. (10)

rsd is the price set by seller s in market d. Aggregate profits are Π =
∑

d∈M
∑

s∈Sd πsd.

International Trade. International trade in final goods is subject to iceberg trade

costs. The cost of delivering one unit of good from origin o to destination d is Pod =

τodpo, where τod ≥ 1 and the triangle inequality holds. I denote by po the producer

price index associated with equation (8).

5.2 Equilibrium

Households. Households choose Cod(i) to maximize equation (5) subject to equa-

tions (6). Solving their problem delivers the following expenditure function, which

governs bilateral trade flows in final goods between markets:

PodCod(i) =

(
P 1−θ
od∑

o∈M P 1−θ
od

)
Ed(i). (11)

14In this model, demand shifters are isomorphic to productivity shocks.
15The results of the counterfactual exercises are robust to assuming Cournot or monopolistic com-

petition, as discussed in Section 7.2.
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Final Goods Producers. Final goods producers choose Rd, Ld(r), and Ld(n) to

maximize profits. Solving their problem yields the following input demand functions:

Rd =
βῑdpdYd
rd

, Ld(r) =
β(1− ῑd)pdYd

wd(r)
, Ld(n) =

(1− β)pdYd
wd(n)

. (12)

rd is the price of robots in market d, while ῑd is the share of Xη
d produced by robots:

ῑd =
Rη
d

Rη
d + Ld(r)η

. (13)

The producer price index associated with equation (8) is:

pd =
β̄

Ad

[
ῑηdr
−η
d + (1− ῑd)ηwd(r)−η

]−β
η wd(n)1−β. (14)

Where β̄ = β−β(1− β)β−1.

Robot Sellers: Pricing. Equations (9) and (12) imply the following robot demand:

Rsd = φsdr
−σ
sd r

σ−1
d βῑdpdYd. (15)

Sellers set rsd to maximize equation (10) given equation (15). Equilibrium prices are:

rsd =
εsd

εsd − 1
wd(n). (16)

Markups are defined as µsd = εsd/(εsd−1), where εsd is the own-price demand elasticity.

Under Bertrand competition the demand elasticity reads:

εsd = σ − (σ − 1)ssd. (17)

The market share of robot seller s in market d, denoted by ssd, is given by:

ssd =
φsdr

1−σ
sd∑

s∈Sd φsdr
1−σ
sd

. (18)

Equations (16), (17), and (18) describe robot sellers’ pricing strategies. Although this

system does not have a closed-form solution, it implies that robot sellers with higher

φsd have higher market shares, face less elastic demand, and charge higher markups at
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a given equilibrium. The robot price associated with equation (9) is:

rd =

(∑
s∈Sd

φsdr
1−σ
sd

) 1
1−σ

. (19)

Robot Sellers: Entry. To ensure the uniqueness of the equilibrium of the entry

game, I let robot sellers make entry choices in decreasing order of φsd. Equation (10)

implies that the profits of each seller are decreasing in the number its competitors. Let

j be the last seller who finds it profitable to enter market d, and let j′ be the next

potential entrant. The following break-even condition must hold in each market:

π̄jd ≥ wd(n)f > π̄j′d. (20)

Equation (20) pins down the equilibrium number of robot sellers. Since the realized

demand shifters have a market-specific component, the order in which robot sellers

enter is allowed to differ by market. Still, robot sellers with higher average appeal

enter more markets. In the model, a multinational is a seller present in least two

markets.

Market Clearing Conditions. A market equilibrium consists of a vector of prices

{rd, wd(n), wd(r)} such that households maximize utility, final goods producers and

robot sellers maximize profits, and markets clear. The market clearing conditions to

be fulfilled in each market are:

poYo =
∑
d∈M

∑
i∈{n,r}

(
P 1−θ
od∑

o∈M P 1−θ
od

)
Ed(i), (21)

L̄d(r) =
β(1− ῑd)pdYd

wd(r)
, (22)

L̄d(n) =
(1− β)pdYd
wd(n)

+Rd + |Sd|f. (23)

Equation (21) is the final goods market clearing condition, determining output in each

market. Equations (22) and (23) govern the equilibrium of routine and non-routine

labor markets, respectively. |Sd| is the number of active sellers in market d. Due to

Walras’ law, one market clearing condition is redundant. In practice, I select wd(n) in

one market as the numéraire and discard the corresponding market clearing condition.

23



5.3 The Role of Market Structure in the Robot Industry

This section provides insights into how robot sellers’ market entry and pricing choices

affect equilibrium outcomes. I proceed in three steps. First, I consider a closed economy

with symmetric sellers, for which an analytical solution can be derived. Then, I extend

the example to a two-market economy with international trade in final goods. Finally,

I argue that the insights of these restricted models continue to hold in the general case

with heterogeneous sellers and multiple markets. Derivations are in Appendix E.4.

Symmetric Sellers and Closed Economy. Let |M| = 1 and φsd = φ. Variables’

subscripts can be omitted. Sellers’ prices admit the following closed-form solution:

r =
ε

ε− 1
w(n), ε = σ − (σ − 1)s, s =

1

|S|
. (24)

Let η = 1 for simplicity but without loss of generality and w(n) be the numéraire. The

industry-level robot price and final goods price index read:

ř = |S|
1

1−σφ
1

1−σ r, p =
β̄

A
řβ. (25)

Notice that η = 1 implies ř = w(r). Suppose that a new robot seller enters this

economy. Treating the number of sellers as a continuous variable for simplicity, equation

(24) implies that entry reduces incumbents’ prices:

∂r

∂|S|
|S|
r

=
1− σ

ε(ε− 1)|S|
< 0. (26)

Equation (25) implies that entry also reduces the industry-level robot price and final

goods price index:

∂ř

∂|S|
|S|
ř

=
1

1− σ
+

1− σ
ε(ε− 1)|S|

< 0,
∂p

∂|S|
|S|
p

=
β

1− σ
+

β(1− σ)

ε(ε− 1)|S|
< 0. (27)

As a result, robot demand and total production Y increase, and so do wage and income

inequality, defined as w(n)/w(r) and E(n)/E(r) respectively, because w(r) decreases

at the same rate of ř. Therefore, more competition in the robot industry generates an

efficiency-versus-equity trade-off. Figure 5 provides a numerical example, treating |S|
as an integer.
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Figure 5. Entry in the Robot Industry - Closed Economy

Note: I simulate an economy consisting of one market initially hosting two symmetric robot sellers.
I set L̄(n) = L̄(r) = 1, A = 0.1, and choose model parameters to match those in Section 6. For the
numéraire, I use w(n) = 1. Then, I progressively increase the number of robot sellers, recompute the
equilibrium allocation each time, and show the effects of entry on different outcomes.

Symmetric Sellers and Two-Market Economy. While keeping φsd = φ and η =

1, I now let |M| = 2 and denote markets by Home (H) and Foreign (F), respectively.

Let wH(n) be the numéraire. Suppose that new sellers enter the Home market. Since

equations (24) and (25) continue to hold in the Home market, entry delivers similar

effects to those described in the closed-economy case in that market.

What happens in the Foreign market? Because markets are connected via inter-

national trade in final goods, a reduction in pH makes all households increase imports

from Home as per equation (11), reducing the total output of Foreign. However, by

reducing the cost of imported goods, entry in the Home market increases the welfare of

all households in the Foreign market. Figure 6 provides a numerical example, treating

again |S| as an integer. The top panels show the effects in Home, while the bottom

ones the effects in Foreign.
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Figure 6. Entry in the Robot Industry - Open Economy

Note: I simulate an economy consisting of two markets, Home and Foreign, initially hosting two
symmetric robot sellers each. I set L̄d(i) = 1 for all (i, d), Ad = 0.1 for all d, and τod = 1 if o = d
and τod = 1.05 if o 6= d. I choose model parameters to match those in Section 6. For the numéraire,
I use wH(n) = 1. Then, I progressively increase the number of robot sellers in Home, recompute the
equilibrium allocation each time, and show the effects of entry in Home on different outcomes in the
Home and Foreign markets.

The General Case. While it provides analytical tractability, robot sellers’ symmetry

is not necessary to generate the predictions in Figures 5 and 6. As long as robot sellers

enter in decreasing order of φsd, the same patterns persist. The outcomes shown in

Figure 6 also apply to the case of multiple countries. However, the impact of entry in

a single market on the rest of the world is more diluted in a multi-country economy.

Taking stocks, the model predicts that the entry of new sellers in a market boosts

competition, leading to an increase in robot adoption and output in that market. To

the extent that markets are linked via international trade, such expansion comes at

the expense of production in other markets. Given the non-neutrality of robots, these

gains and losses are not evenly distributed across different workers.
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6 Quantification

This section discusses estimation, identification, and model fit.

6.1 Empirical Implementation

Market Definition. I use a K-means algorithm to aggregate the original 45 countries

into larger sub-entities corresponding to markets in the model. The purpose of the

aggregation is twofold. First, it accounts for the fact that robot sellers may use branches

in one country to serve adopters in adjacent ones, which may happen especially in

small countries within the same geographical and economic areas (e.g., Belgium and

The Netherlands). Second, it reduces the dimensionality of the robot sellers’ entry

problem while preserving size differences across markets.

The algorithm merges countries with similar latitude and longitude and belonging

to the same continent and creates 12 markets. I choose this number to balance between

interpretable clusters and dimensionality reduction. The merged markets inherit the

average characteristics of the countries belonging to them, and I sum the number of

branches across countries by seller before computing market shares.

Figure A.7 shows the result of the clustering procedure. The European continent

is divided into three markets approximately corresponding to eastern countries (e.g.

Hungary and Romania), western-northern countries (e.g., Germany and Sweden), and

central-southern countries (e.g., Italy and France).16 Asia is divided into two markets.

The first includes China and India, and the second Japan and South Korea. South

America is also divided into two markets, one including central countries (e.g., Mexico

and Colombia) and one made of central-southern ones (e.g., Brazil and Argentina).

Australia and New Zealand belong to the same market, whereas the US, Canada and

South Africa constitute separate ones.

Exogenous Variables. The model features the following exogenous variables: the

number of routine workers, L̄d(r), the number of non-routine workers, L̄d(n), the pro-

ductivity of the final goods producers, Ad, and bilateral trade costs, τod.

The first three variables come from the WDI database of the World Bank. I ap-

proximate L̄d(r) using total employment in agriculture and manufacturing and L̄d(n)

16I define Europe according to the geographical definition provided by the United Nations, rather
than the political definition based on EU member states. This approach simplifies the classification
of countries such as Switzerland and Norway during the clustering process.
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using total employment in the services sector. This approximation is justified by the

fact that 99% of the stock of robots in the IFR data are employed in agriculture and

manufacturing. No industrial robots are adopted in services, implying that workers in

that sector cannot be replaced by robots. I compute Ad using the weighted average of

labor productivity in agriculture, manufacturing, and services, where the weights are

given by the employment share of each sector. Trade costs between country pairs, τod,

come from the ESCAP World Bank database.

6.2 Estimation Procedure and Identification

Households’ choices depend on the trade elasticity, 1 − θ. The choices of final goods

producers depend on the elasticity of substitution between robots and routine workers,

1/(1−η), and the production share of non-routine workers, 1−β. Robot sellers’ choices

are governed by the demand shifters, φsd, the elasticity of substitution between their

products, σ, and market-level entry costs, f . I calibrate θ, η, and β from previous

literature and the data. I use a simulated method of moments (SMM) algorithm to

estimate φsd, σ, and f .

Calibration. As standard in the international trade literature, I set θ = 5 to obtain a

trade elasticity of−4 (Simonovska and Waugh, 2014; Head and Mayer, 2014). Following

Guerreiro et al. (2022), I let η = 1, which implies perfect substitution between robots

and routine workers. Thus, routine workers’ wages are equalized to robot prices and

pinned down by competition among robot sellers in local markets. I calibrate β to

match the average share of value added of the agricultural and manufacturing sectors

in the sample. The implied value of β is 0.34.

Simulated Method of Moments. Robot sellers draw φsd from the following log-

normal distribution, with mean and variance to be estimated:

φsd = exp{φi + κLog Distance from HQsd + ζusd}, i ∈ {Top 4,Rest}. (28)

The demand shifter of robot seller s in market d is a function of its average appeal, the

physical distance of market d from its HQ, and an i.i.d. normally distributed random

shock with zero mean and unit variance. To minimize the computational burden of the

SMM procedure, instead of estimating the average appeal of each robot seller, I let the
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top 4 sellers in the data (ABB, Kuka, Fanuc, and Yaskawa) draw demand shifters from a

distribution with a potentially higher mean than the others, i.e., I expect φ̂Top 4 ≥ φ̂Rest.

Consistently with the frictions discussed in Section 4.1 and 5.1, I expect κ̂ < 0. The

vector of parameters to be estimated is Θ = {φTop 4, φRest, κ, ζ, σ, f}.
The SMM procedure consists of a loop with three nests: an outer loop searching

over the vector of parameters Θ, a middle loop solving the model general equilibrium

allocation, and an inner loop finding the solution to the robot sellers’ problem. For each

candidate vector Θ, I draw B matrices of φsd from equation (28),17 solve the model at

each draw, and compute the model-implied moments m(Θ) as an average across draws.

Then, I match simulated moments to the data ones m̄ to minimize the SMM objective

function L(Θ) = (m(Θ)− m̄)′W (m(Θ)− m̄), being W a weighting matrix.

To solve the model, I extend the solution algorithm developed by Gaubert and It-

skhoki (2021) for a two-country economy to a multi-country one. This requires guessing

wages for each market, solving the robot sellers’ problem in each of them, and iter-

ating until a fixed point is reached. Convergence of the inner loop entails a discrete

search over the number of sellers, as per equation (20), and a non-linear search over

their prices in equation (16). Convergence of the middle loop is achieved by a linear

inversion of equations (21), (22), and (23), which helps to reduce the computational

burden of the search. See Appendix F for more details.

Identification. I target eight data moments to estimate six parameters. The selected

moments are informative about robot sellers’ entry choices (i.e., number of served

markets and their distance from the HQ), their sales (i.e., market shares), competition

(i.e., number of sellers by market), and robot adoption (i.e., number of robots used). I

assign equal weight to each moment by choosing W to be the identity matrix.

Although the structural parameters are jointly estimated, each of them is informed

in an intuitive way by distinct targeted moments. The parameter φTop 4 serves to match

the average log number of markets entered by the top 4 robot sellers and their average

market shares, whereas φRest helps matching those of the other robot sellers. All else

equal, higher values of both parameters translate into more entered markets and higher

market shares. The parameter κ is chosen to replicate the average log distance between

the robot sellers’ HQ and the markets they enter, while ζ aids matching the standard

deviation of the distribution of market shares across robot sellers. A higher κ reduces

17I use B = 200. I draw normally distributed i.i.d. shocks usd using Sobol sequences to cover the
support of the normal distribution more efficiently than if points were randomly drawn (Train, 2009).
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robot sellers’ appeal in more distant markets, whereas a higher ζ makes the realized

demand shifters more sensitive to i.i.d. shocks and less to fundamentals.

I choose σ to match the average log stock of robots in the data. Identification rests

on the fact that all else equal, higher σ translates into lower markups, lower prices, and

a higher number of robots adopted. Finally, f serves to match the average log number

of robot sellers per market. A higher f reduces the number of entrants.

6.3 Estimation Results

Model Parameters. Table 2 reports the calibrated and estimated parameter values.

Table 2. Summary of the Model Parameters

Parameter Description Value 95% CI Source/Target

Calibrated

θ Trade Elasticity 5.00 Head and Mayer (2014)

β Income Share of Xd 0.34 WDI

η Ld(r) vs Rd Elasticity 1.00 Guerreiro et al. (2022)

Estimated

φH Average Demand Shifters (Top 4) 3.26 [2.43, 4.41] Mean Log Markets and Mkt Shares (Top 4)

φL Average Demand Shifters (Rest) 2.03 [1.40, 3.04] Mean Log Markets and Mkt Shares (Rest)

κ Elasticity to Dist. from HQ -0.91 [-1.13, -0.86] Mean Log Dist. from HQ

ζ Demand Shifters St. Dev. 1.81 [1.21, 2.10] St. Dev. Market Shares

f Market-Level Entry Costs 1.75 [1.16, 2.49] Mean Log No. of Sellers by Market

σ Elasticity of Substitution b/ween Rsd 3.84 [2.96, 6.52] Mean Log Stock of Robots

Note: The table contains the values of the parameters of the model. The top panel reports the value of the parameters calibrated without solving

the model. The bottom panel contains those estimated by the SMM procedure. Bootstrap standard errors in parenthesis are computed using the

method of Bernard et al. (2022), which I describe in Appendix F.2.

As expected, the top 4 robot sellers have a higher average appeal than the oth-

ers, though the 95% confidence intervals around the two parameters partially overlap.

Moreover, robot sellers’ appeal to final goods producers decreases as they enter markets

more distant from their HQ, which is consistent with gravity in Section 4.1.

On average, entry costs amount to about 20% of robot sellers’ revenues. Positive

entry costs align with the fact described in Section 4.2 that only a subset of robot

sellers are active in each market.

The estimated value of σ implies a markup of approximately 42% at the average

sample market shares, with a standard deviation of 17%. This number falls within the

range provided by the literature in other industries (De Loecker et al., 2020).
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Model Fit. Table 3 shows that the model accurately matches the targeted moments.

Table 3. Model Fit on Targeted Moments

Description Data Moments Simulated Moments

Mean Log No. of Markets (Top 4) 2.29 2.32

Mean Log No. of Markets (Rest) 2.07 2.12

Mean Market Share (Top 4) 0.17 0.18

Mean Market Share (Rest) 0.12 0.09

Mean Log Dist. from HQ 9.01 9.07

St. Dev. Market Shares 0.07 0.06

Mean Log No. of Sellers by Market 1.99 1.90

Mean Log Stock of Robots 10.30 10.30

Note: The table reports the data moments targeted by the SMM procedure and the simulated

ones implied by the estimated model.

The model also replicates moments not targeted during the SMM procedure, as

shown in Table 4. The rows show seller or market-level outcomes, whereas the columns

report their values in the data and as implied by the model. As shown by the last

column, the null hypothesis of equal means cannot be rejected for any outcome.

Table 4. Model Fit on Non-Targeted Moments

Description Data Moments Simulated Moments P-value

Log Saless 5.87 6.33 0.48

HHId 0.33 0.40 0.28

Log GDP per capitad 10.0 11.4 0.50

Log Export Valuesd 10.6 11.2 0.76

Note: Each row contains a seller (s) or market-level (d) outcome. The first column reports

average values in the data. The second column shows model-implied average values for each

outcome. Averages are computed across sellers or markets. The last column is the p-value

associated with the null hypothesis that data and model-implied moments have equal means.

Finally, the model replicates the dispersion in robot prices across markets observed

in the data. The correlation between the model-implied robot prices calculated using

equation (19) and the import prices (unit values) obtained from the BACII dataset

equals 84%. Overall, these results support the model’s reliability in capturing salient

features of the robot industry and the global economy.
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7 A Tax on Robot Adoption

This section discusses the effects of taxing the adoption of robots.

7.1 Design and Implementation

The Debate in the European Union. In 2017, the EU Parliament debated the

introduction of a tax on automation technology, including robots, to mitigate its poten-

tial adverse effects on exposed workers. In particular, the Committee on Legal Affairs

of the European Parliament was concerned that “[...] the development of robotics and

AI may result in a large part of the work now done by humans being taken over by

robots, so raising concerns about the future of employment”.18

Although the proposal was ultimately voted down, discussions about policies reg-

ulating the adoption of automation technology continue to pervade the academic and

policy debates (Brynjolfsson and McAfee, 2014; Shiller, 2017; Acemoglu and Johnson,

2023). Inspired by them, I use the model to evaluate how multinational robot sell-

ers react to policies constraining robot adoption and how their responses shape the

outcomes of these policies.

Introducing a Tax in the Model. In line with previous literature (Thuemmel,

2022; Guerreiro et al., 2022), I consider the introduction a value-added robot tax paid

by robot adopters. Let td ∈ (0, 1) if d ∈ EU and 0 otherwise. The new price of robots

can be expressed as:

rd =
βῑdpdYd

(1 + td)Rd

. (29)

Wage equalization between robots and routine workers requires wd(r) = (1 + td)rd.

Equation (15) can be modified as:

Rsd = φsdr
−σ
sd r

σ−1
d

βῑdpdYd
1 + td

. (30)

A tax reduces the quantity of robots that final users demand, shrinking the effective

size of local robot markets. A tax generates revenues TEU =
∑

d∈M 1{d ∈ EU}tdrdRd,

which are distributed as a lump-sum payment to EU households.

18See https://www.europarl.europa.eu/doceo/document/JURI-PR-582443_EN.pdf?redirect

for the full proposal of the Committee on Legal Affairs of the European Parliament.
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Counterfactual Scenarios. I consider two counterfactual scenarios. In the first, I

assume that robot sellers are unable to adjust their entry choices and markups once

the tax is implemented. This scenario mimics the standard approach in the litera-

ture (Humlum, 2021; Beraja and Zorzi, 2022; Thuemmel, 2022; Guerreiro et al., 2022;

Costinot and Werning, 2023).

In the second scenario, I allow robot sellers to change the set of markets they serve

and the markups they charge in each market. All else equal, responses along these

margins may amplify or attenuate the effects of a tax. On the one hand, if robot prices

strongly respond to local competition, robot sellers’ market entry and exit choices may

magnify the effects of taxing robot adopters. On the other, robot sellers’ ability to

change markups, implying imperfect pass-through, may generate attenuation.

I consider a 5% robot tax as the baseline. This tax rate aligns with the short-run

optimal tax estimated for the US by Guerreiro et al. (2022). Appendix F.3 describes

the algorithm used to perform the counterfactuals.

7.2 Results

The Effects in the EU. Table 5 shows the effects of a 5% EU-wide value-added tax

on robot adoption in the average EU market. All outcomes are presented as percentage

changes relative to the baseline scenario without the tax.

In the first scenario, the number of robot sellers and their markups remain un-

changed by design. Final goods producers experience a 5.2% increase in robot prices,

leading to a 4.8% reduction in robot demand. Accordingly, production costs rise by

1.9% and output decreases by 1.7%. Consumer prices increase by 0.6%. Income in-

equality is reduced by 4.7%, with routine households experiencing a 3.3% welfare gain

and non-routine households experiencing a 1.5% welfare loss due to their different

sustainability with robots.

In the second scenario, the tax leads to a 2.2% reduction in the number of robot

sellers. Exit induces an endogenous reallocation of market shares among incumbents,

generating a 0.2% increase in their average markup, denoted as µ̄ = 1
|Sd|
∑

s∈Sd µsd.

This increase puts upward pressure on the other prices. Robot prices increase by

5.1% more than in the first scenario, generating a 15.8% stronger reduction in robot

adoption. Producer prices increase by 1.3% more than in the first scenario, while

output decreases by 31.6% more. Consumer prices also rise by 37.1% more than in the

first case. Income inequality is reduced by 6.9% more, with 11.3% smaller welfare gains
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Table 5. The Effects of an EU-wide Robot Tax in the EU

Outcome Variable First Scenario Second Scenario % Change

Panel A: Robot Sellers

Number of Sellers Sd 0.000% -2.287%

Markups µ̄d 0.000% 0.239%

Panel B: Final Goods Producers

Robot Price rd 5.247% 5.519% 5.184%

Robot Stock Rd -4.898% -5.675% 15.864%

Producer Price Index pd 1.921% 1.947% 1.353%

Output Yd -1.794% -2.362% 31.661%

Panel C: Households

Consumer Price Index Pd 0.667% 0.915% 37.181%

Welfare Routine Wd(r) 3.349% 2.968% -11.377%

Welfare Non-Routine Wd(n) -1.573% -2.290% 45.582%

Income Inequality Ed(n)/Ed(r) -4.763% -5.094% 6.949%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average EU market.

Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects

on households. In the first scenario, robot sellers are unable to adjust their entry choices and markups once the tax is

implemented. In the second, they can change the set of markets served and the markups charged in each market. In

the first two columns, outcomes changes are relative to the initial equilibrium without tax. The last column displays the

percentage change in each outcome between the second and first scenario.

for routine households and 45.4% larger welfare losses among non-routine households.

Comparing outcome changes between scenarios suggests that ignoring multinational

robot sellers’ responses leads to underestimating the aggregate and distributional effects

of a tax in the average EU market by about 20%. In terms of policy implications, the

results suggest that a welfare-maximizing EU Social Planner should set lower robot

taxes when robot sellers adjust to it.

The Effects Beyond the EU. Since markets are linked via international trade, a

tax also produces effects beyond the EU. Table B.9 shows the effects of a 5% EU-wide

value-added tax on robot adoption in the average non-EU market.

An EU-wide robot tax makes EU final goods more expensive, leading EU and non-

EU households to shift their expenditures towards non-EU goods. This demand shift

prompts non-EU final goods producers to increase output by using more robots. In

the first scenario, the average non-EU market sees a 0.8% rise in both robot adoption

and output. The consumer price index goes up by 0.6%, resulting in a welfare loss of
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0.4% for routine and non-routine households.

In the second scenario, the exit of some robot sellers from the EU generates a 26.4%

stronger increase in consumer prices beyond the EU, leading to twice as large welfare

losses for all non-EU households compared to the first scenario. Therefore, ignoring

multinational robot sellers’ responses to a local tax leads to underestimating the ripple

effects of a tax also beyond the domestic border.

Robustness. The results presented in this section are robust to alternative tax rates

or market structure assumptions. Tables B.10 and B.11 show the effects while con-

sidering a 2% or 7% EU-wide robot tax. As the tax rate increases, all changes in

outcomes relative to an equilibrium without taxes are amplified. Tables B.12 and B.13

show that the direction of the second-scenario effects are robust to assuming Cournot

or monopolistic competition.

7.3 Further Discussion

The Role of Gravity. Figure 2 highlights that reductions in market access induce

disproportionally more exit of robot sellers originating from more distant locations.

Since an EU-wide robot tax reduces market access in the EU, higher exit rates among

Asian robot sellers are expected. Table B.14 provides evidence for this uneven effect.

In an equilibrium with a tax, the average Asian seller serves 1.6% fewer EU markets

than in an equilibrium without. By contrast, the average EU seller experiences a lower

reduction in the number of EU markets served, equal to 0.7%. Therefore, robot sellers’

heterogeneous responses effectively make a robot tax a protectionist measure.

The Role of International Trade in Final Goods. Tables B.15 and B.16 compare

the second-scenario outcomes in Tables 5 and B.9 with those obtained in a counter-

factual economy where bilateral trade costs on final goods are 5% lower. Both tables

reveal a complementarity between trade costs and robot sellers’ responses: the same

robot tax produces larger effects when trade costs are lower. This happens because

lower trade costs lead to higher sensitivity of households’ import shares in equation

(11) to changes in prices.19 Consequently, the reallocation of demand for final goods

across markets is amplified, and so is the reallocation of robot supply.

19This effect should be understood as a local one around the observed trade costs. In the limit case
of free trade, final goods prices equalize and households’ expenditure shares become fixed.
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Unilateral Versus Multilateral Taxation. Table B.17 compares the outcomes in

Tables 5 and B.9 with those resulting from a worldwide 5% value-added tax on robot

adoption. Compared to a unilateral one, a worldwide tax reduces the number of active

robot sellers and output everywhere. All routine households experience welfare gains

and all non-routine households face welfare losses. In this sense, a multilateral tax

may eliminate the incentives for governments to retaliate against or take advantage of

unilateral taxes introduced in foreign jurisdictions.

The Distribution of Outcomes Changes within the EU and non-EU. Tables

5 and B.9 refer to the average EU and non-EU markets. I inspect the distribution of

the outcome changes between markets within the EU and non-EU areas in Table B.18.

Although there is variation in the magnitude of the changes, their sign is consistent

across the different moments of the distribution within each area.

A Subsidy on Robot Adoption. Following a similar reasoning as for the tax, I

examine the implementation of an EU-wide 5% discount on the price of robots paid by

final producers funded by taxing EU households. Table B.19 shows the effects in the

average EU and non-EU markets, allowing robot sellers to endogenously adjust entry

choices and markups once the tax is introduced. As one may expect, all outcomes

exhibit the opposite direction compared to Tables 5 and B.9.

Additional Margins of Supply-Side Responses. Besides market entry and pric-

ing choices, multinational robot sellers could respond to regulation along additional

margins, such as product innovation. If a tax reduces innovation incentives, robot

supply contracts even more than in the baseline model, further magnifying outcome

differences between models with and without supply-side responses.

The model can be extended to include multi-product robot sellers. For instance,

sellers may offer factory-gate robots differentiated in terms of speed and precision. If

robot sellers specialize in different products, markets become more segmented, leading

to greater concentration. Since robot prices are more sensitive to changes in the number

of sellers when there are only a few incumbents (see Figure 5), the exit of robot sellers

would cause a stronger increase in markups and prices than in the baseline model.

Therefore, the results presented thus far should be understood as a lower bound

to those implied by a richer model that includes additional margins of supply-side

responses.
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8 Additional Counterfactuals

This section discusses the effects of boosting competition in the robot industry. It is

worth noticing that the model can also be used to study a range of additional inter-

ventions, such as the implementation of minimum wages, place-based interventions, as

well as trade policies.

8.1 Promoting Competition in Robot Sales

The Debate. Recent literature has highlighted that firms’ market power, even if

confined to specific sectors, can have substantial detrimental effects for the economy

as a whole (Edmond et al., 2015; De Loecker et al., 2020; Autor et al., 2020; Edmond

et al., 2023). These concerns are relevant for the robot industry given its high level of

concentration. In light of this debate, I investigate what are the effects of promoting

competition in the robot industry.

Counterfactual Scenarios. I evaluate two counterfactual scenarios. In the first,

while holding the total number of robot sellers fixed, I simulate the effects of a 25%

reduction in the entry costs that robot sellers must pay to serve each market. In the

second, while holding entry costs fixed, I simulate the arrival of a new top robot seller

with HQ in China, the largest country in the world in terms of robot adoption. In each

scenario, I study the implications for competition in the robot industry, final goods

producers, and households. Details about the solution algorithm are in Section F.4.

Results. Table B.20 shows the results. I present all outcomes as percentage changes

relative to the baseline model equilibrium.

Boosting competition among robot sellers reduces markups and prices in all mar-

kets. In the first counterfactual scenario, routine households experience a welfare loss,

whereas non-routine households face a welfare increase. In the second counterfactual

scenario, where pro-competitive effects are stronger, both types of households are better

off. Still, income inequality increases in both scenarios.

These findings suggest that distortions in the robot industry are potentially large

but their cost is not evenly borne. If the pro-competitive effects of policy interventions

are strong enough, all types of workers can be better off. However, the non-neutrality

of robots implies that non-routine workers experience disproportionally larger gains.
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9 Conclusions

Automation technology enhances productivity but generates concerns about job dis-

placement, leading to an academic and policy debate about policies to favor or dis-

courage its adoption. The current debate focuses on how policy interventions impact

technology adopters. In this paper, I investigate how supply-side responses shape the

outcomes of policy changes. I focus on the global market of industrial robots, an

industry where a few multinational enterprises dominate production and sales.

I collect new data on the characteristics and global sales of the leading multinational

robot sellers worldwide. I then develop and estimate a quantitative multi-country gen-

eral equilibrium model accounting for the role of multinational sellers in the robot

industry. Using the model, I show that multinational robot sellers’ market entry and

pricing responses to policies targeting robot adoption substantially amplify the aggre-

gate and distributional effects of these interventions. To the extent that markets are

linked via international trade and multinational activity, the effects of a local policies

transmit beyond local borders.

Overall, this paper conveys two messages. First, any regulation targeting the dif-

fusion of robots should take into account not just the responses of robot adopters but

also consider those of robot sellers. Second, policymakers of different countries may

need to coordinate their efforts to avoid unintended ripple effects.

Properly adapted, the theoretical frameworks developed in this paper can be used

to investigate the role of market power in other segments of the automation industry

and other global input markets.
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and Andrés Rodŕıguez-Clare, “Trade, Multinational Production, and the Gains
from Openness,” Journal of Political Economy, 2013, 121 (2), 273–322.

Redding, Stephen and Anthony J Venables, “Economic Geography and Interna-
tional Inequality,” Journal of international Economics, 2004, 62 (1), 53–82.

Rodriguez, Francisco and Dani Rodrik, “Trade Policy and Economic Growth: a
Skeptic’s Guide to the Cross-National Evidence,” NBER Macroeconomics Annual,
2000, 15, 261–325.

42



Shiller, Robert J, “Taxing Robots? This is Why We
Might Need To,” https://www.weforum.org/agenda/2017/03/

taxing-robots-this-is-why-we-might-need-to 2017.

Simonovska, Ina and Michael E Waugh, “The Elasticity of Trade: Estimates and
Evidence,” Journal of International Economics, 2014, 92 (1), 34–50.

Thuemmel, Uwe, “Optimal Taxation of Robots,” Journal of the European Economic
Association, 2022.

Tintelnot, Felix, “Global Production with Export Platforms,” The Quarterly Journal
of Economics, 2017, 132 (1), 157–209.

Train, Kenneth E, Discrete Choice Methods with Simulation, Cambridge University
Press, 2009.

UBS, “Longer Term Investments (Automation and Robotics),” https:

//www.ubs.com/content/dam/WealthManagementAmericas/documents/

automation-and-robotics-lti-report.pdf 2020. Online; accessed 09 June
2021.

Wooldridge, Jeffrey M, “Control Function Methods in Applied Econometrics,”
Journal of Human Resources, 2015, 50 (2), 420–445.

43

https://www.weforum.org/agenda/2017/03/taxing-robots-this-is-why-we-might-need-to
https://www.weforum.org/agenda/2017/03/taxing-robots-this-is-why-we-might-need-to
https://www.ubs.com/content/dam/WealthManagementAmericas/documents/automation-and-robotics-lti-report.pdf
https://www.ubs.com/content/dam/WealthManagementAmericas/documents/automation-and-robotics-lti-report.pdf
https://www.ubs.com/content/dam/WealthManagementAmericas/documents/automation-and-robotics-lti-report.pdf


Appendices

A Figures

Figure A.1. The Supply Chain of Industrial Robots

Production Integration Adoption

Note: The figure shows the typical supply chain of industrial robots. Nearly half of the world’s
production of robots takes place in Japan. During the integration stage, final users purchase robots
and “integration services” such as customization, installation, and ongoing maintenance from sellers.
Robots are typically used by large manufacturing firms.
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Figure A.2. Market Shares in the Global Robot Industry

Note: The figure shows market shares in 2021. Robot sellers are also active in other capital-intensive
production activities, including the manufacturing of semiconductors, collision sensors, and service
and collaborative robots. Since Orbis does not consistently provide a breakdown of sales by sector
of activity, I calculated the market shares using the total turnover of the 26 robot sellers registered
with the IFR across all their sectors of activity. However, since automation provision is the primary
activity of these firms, their total sales are an accurate proxy for their size in the industry.
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Figure A.3. Total Turnover of Top 4 Producers by Sector

Note: The figure compares the total revenues (in billion USD in 2021) of the top 4 robot sellers with
the total revenues of the top 4 sellers in the automotive, smartphone, semiconductor, and computer
industries in terms of revenues in Orbis. The top 4 sellers in the automotive industry are Volkswagen,
Toyota, Ford, and General Motors. In the smartphone industry, the top 4 sellers are Apple, Huawei,
Xiaomi, and Oppo. The semiconductor industry’s top 4 sellers include Samsung, Intel, TSMC, and
SK HYNIX. The computer industry’s top 4 sellers are Dell, Lenovo, HP, and Acer. It’s worth noting
that Samsung is also a top smartphone seller. However, the ranking in the figure remains unchanged
whether I include Samsung in the smartphone industry or exclude it from the sample. To compile
these lists, I used Orbis Bureau van Dijk in the following manner: First, I identified the industry
code associated with each of the four industries under consideration. Second, I retrieved all firms that
reported one of these four codes as their main sector of activity. Third, within each sector, I ranked
firms based on their total revenues and selected the top 4. It’s important to mention that Orbis does
not consistently report revenues by sector of activity. Therefore, I assigned firms to one sector only
while creating the ranking based on the total revenues from all their activities.
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Figure A.4. Examples of Websites with Information about Branches

Example 1: A Branch of Kuka

Example 2: A Branch of ABB

Note: The figure shows an example of a website containing information about robot sales branches.
The typical information displayed is the branch name and address, as in Example 1. Sometimes,
additional information like the telephone number, web address, list of countries served, and product
lines are reported, as in Example 2.
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Figure A.5. The Global Footprint of Robot Sellers

Note: The figure shots the number of branches per country. China, Germany, Japan, South Korea,
and the US are the five largest destination countries.
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Figure A.6. Differences between Robot Sellers

Note: The left panel of the figure shows the average number of markets served by the top 4 multina-
tional robot sellers versus the other 6 sellers, labeled “Rest”. The right panel of the figure shows the
average market shares of the two groups.
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Figure A.7. Market Definition

Note: The figure shows the definition of 12 markets used in the quantitative model. Markets are
aggregated using a K-means algorithm that merges countries with similar latitude and longitude and
belonging to the same continent. The resulting markets inherit the average of the characteristics of
the countries belonging to them.
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B Tables

Table B.1. Gravity in Market Entry and Sales

Dependent Variables: Entrys(o)d Market Shares(o)d Entrys(o)d Market Shares(o)d

(1) (2) (3) (4)

Log Distance from HQs(o)d -0.14∗∗∗ -0.04∗∗∗

(0.03) (0.010)

Cultural Distance from HQs(o)d 0.05∗ 0.03∗∗∗

(0.03) (0.010)

Seller FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Observations 450 214 450 214

Estimator OLS OLS OLS OLS

Note: An observation is a robot seller-destination country pair. In the first and third columns, the dependent

variable is a binary indicator equal to 1 if seller s from HQ o enters in country d. In the second and fourth columns,

the dependent variable is the market share of seller s from HQ o in country d. Log Distance from HQs(o)d

is the log of the distance between the two most populated cities of the seller HQ and destination country in

kilometers. Cultural Distance from HQs(o)d is a continuous index of linguistic proximity between the seller HQ

and the destination country. Both variables are standardized to have zero mean and unit variance in the sample.

Heteroscedasticity-robust standard errors in parenthesis. Significance levels: *** 0.01, ** 0.05, * 0.1.
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Table B.2. The Implications of Gravity

Dependent Variable: Number of Sellersod

(1) (2)

Log Distance from HQod -0.19∗ -0.41∗∗∗

(0.11) (0.12)

Remotenessd -0.24∗∗

(0.11)

Log Distance from HQod × Remotenessd -0.11∗∗ -0.17∗∗

(0.04) (0.07)

Origin FE Yes Yes

Destination FE No Yes

Destination Controls Yes No

Bilateral Controls Yes Yes

Observations 180 180

Estimator PPML PPML

Note: An observation is a country pair. In the both columns, the depen-

dent variable is the number of robot sellers from HQ o that have at least one

branch in country d. Log Distance from HQod is the log distance between

the two most populated cities of the origin and destination countries in kilo-

meters. Remotenessd is the inverse of the market access measure developed

by Redding and Venables (2004). Both variables are standardized to have

zero mean and unit variance in the sample. Destination controls include

the GDP per capita (in 2010 USD PPP), population, and land size of the

destination country. Bilateral controls include a binary indicator equal to

1 if o and d belong to the same continent and bilateral cultural proximity.

Heteroscedasticity-robust standard errors in parenthesis. Significance levels:

*** 0.01, ** 0.05, * 0.1.
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Table B.3. Concentration and Market Size

Dependent Variables: Number of Sellersd HHId Number of Sellersd HHId

(1) (2) (3) (4)

Intercept 4.8∗∗∗ 0.34∗∗∗ 4.8∗∗∗ 0.34∗∗∗

(0.34) (0.02) (0.21) (0.02)

Log GDP per capitad 1.0∗∗∗ -0.02

(0.23) (0.02)

Log Populationd 2.2∗∗∗ -0.09∗∗∗

(0.24) (0.02)

Observations 45 45 45 45

Estimator OLS OLS OLS OLS

Note: An observation is a destination country. In the first and third columns, the dependent

variable is the number of robot sellers active in country d. In the second and fourth columns, the

dependent variable is the HHI in country d. Log GDP per capitad is the log GDP per capita in

country d (in 2010 USD PPP), whereas Log Populationd is the log total population of country d. I

standardize both variables to have zero mean and unit variance in the sample. Heteroscedasticity-

robust standard errors in parenthesis. Significance levels: *** 0.01, ** 0.05, * 0.1.
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Table B.4. Robot Adoption and Robot Sellers

Dependent Variables: Log Number of Sellersd Log (1 + New Installmentsd)

(1) (2) (3) (4) (5) (6)

IVd 2.7∗∗∗ 2.0∗∗∗

(0.45) (0.44)

Log Number of Sellersd 4.9∗∗∗ 3.9∗∗∗ 6.5∗∗∗ 4.7∗∗∗

(0.76) (0.96) (0.82) (1.2)

Controls No Yes No Yes No Yes

Observations 45 45 45 45 45 45

KP F-stat 35.8 20.2

Stage First First Second Second Second Second

Estimator OLS OLS OLS OLS IV IV

An observation is a destination country. In the first two columns, the dependent variable is the log

number of robot sellers in country d. In the last four columns, the dependent variable is the log of one

plus the number of new robot installments in country d. The first two columns show the first-stage

OLS estimates. The third and fourth columns report the second-stage OLS estimates. The last two

columns report the second-stage IV estimates. IVd =
∑

o
1

log(distod)
is the total inverse log distance

in kilometers between the two most populated cities of country d and the robot sellers’ HQ countries.

Log Number of Sellersd is the log number of robot sellers in country d. Controls include the log GDP

per capita (in 2010 USD PPP), population, latitude, and longitude of country d. KP F-stat is the

Kleibergen-Paap Wald statistics. Heteroscedasticity-robust standard errors in parenthesis. Significance

levels: *** 0.01, ** 0.05, * 0.1.
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Table B.5. Robot Adoption and Robot Sellers - Alternative IV

Dependent Variables: Log Number of Sellersd Log (1 + New Installmentsd)

(1) (2) (3) (4)

IV2d 0.28∗∗∗

(0.04)

IV3d 0.26∗∗∗

(0.04)

Log Number of Sellersd 3.4∗∗∗ 3.5∗∗∗

(1.0) (1.2)

Controls Yes Yes Yes Yes

Observations 45 45 45 45

KP F-stat 46.1 40.9

Stage First First Second Second

Estimator OLS OLS IV IV

An observation is a destination country. In the first two columns, the dependent variable is

the log number of robot sellers in country d. In the last two columns, the dependent variable is

the log of one plus the number of new robot installments in country d. The first two columns

show the first-stage OLS estimates. The last two columns report the second-stage IV estimates.

Log Number of Sellersd is the log number of robot sellers in country d. Controls include the

log GDP per capita (in 2010 USD PPP), population, latitude, and longitude of country d.

IV 2d =
∑

o IV 2od, where IV 2od are the fitted values of a gravity regression of the log number

of sellers with HQ in country o with at least one branch in country d on the log distance in

kilometers between the two countries. IV 3d is defined as IV 2d but adding to the underlying

gravity regression a cultural proximity variable and indicator variables equal to 1 if the country

pair belongs to a regional trade agreement, shares a common religion, or has ever been in a

colonial relationship. KP F-stat is the Kleibergen-Paap Wald statistics. Heteroscedasticity-

robust standard errors in parenthesis. Significance levels: *** 0.01, ** 0.05, * 0.1.
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Table B.6. Robot Adoption and Robot Sellers - Alternative Sample

Dependent Variables: Log Number of Sellersd Log (1 + New Installmentsd)

(1) (2) (3) (4) (5) (6)

IVd 2.4∗∗∗ 1.9∗∗∗

(0.42) (0.48)

Log Number of Sellersd 4.4∗∗∗ 4.3∗∗∗ 6.6∗∗∗ 5.7∗∗∗

(0.84) (1.1) (0.91) (1.4)

Controls No Yes No Yes No Yes

Observations 40 40 40 40 40 40

KP F-stat 33.1 15.4

Stage First First Second Second Second Second

Estimator OLS OLS OLS OLS IV IV

This table reproduces Table B.4 but excludes the top five markets for robots (i.e., China, Germany,

Japan, South Korea, and the US) from the estimation sample. An observation is a destination country.

The dependent variable is the log of one plus the number of new robot installments in country d.

Log Number of Sellersd is the log number of robot sellers in country d. The first two columns show the

second-stage OLS estimates. The last two columns report the second-stage IV estimates. The instrument(
IVd =

∑
o

1
log(distod)

)
is the total inverse log distance in kilometers between the two most populated

cities of country d and the robot sellers’ HQ countries. Controls include the log GDP per capita (in

2010 USD PPP), population, latitude, and longitude of country d. KP F-stat is the Kleibergen-Paap

Wald statistics. Heteroscedasticity-robust standard errors in parenthesis. Significance levels: *** 0.01,

** 0.05, * 0.1.
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Table B.7. Robot Adoption and Robot Sellers - Al-
ternative Outcome

Dependent Variable: Log Robot Importsd

(1) (2) (3) (4)

Log Number of Sellersd 0.15∗∗∗ 0.10∗∗∗ 0.21∗∗∗ 0.15∗∗∗

(0.03) (0.03) (0.03) (0.04)

Controls No Yes No Yes

Observations 45 45 45 45

KP F-stat 35.8 20.2

Stage Second Second Second Second

Estimator OLS OLS IV IV

An observation is a destination country. The dependent variable is the log

of robot imports (HS 847950) in country d. Log Number of Sellersd is the

log number of robot sellers in country d. The first two columns report the

second-stage OLS estimates. The last two columns report the second-stage

IV estimates. The instrument
(
IVd =

∑
o

1
log(distod)

)
is the total inverse

log distance in kilometers between the two most populated cities of country

d and the robot sellers’ HQ countries. Controls include the log GDP per

capita (in 2010 USD PPP), population, latitude, and longitude of country

d. KP F-stat is the Kleibergen-Paap Wald statistics. Heteroscedasticity-

robust standard errors in parenthesis. Significance levels: *** 0.01, **

0.05, * 0.1.
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Table B.8. Robot Adoption and Robot Sellers - Alternative
Estimator

Dependent Variable: New Installmentsd

(1) (2) (3) (4)

Log Number of Sellersd 3.7∗∗∗ 1.3∗∗ 3.6∗∗∗ 0.93∗

(0.76) (0.58) (0.88) (0.55)

Controls Yes Yes Yes Yes

Observations 45 45 45 45

Stage Second Second Second Second

Estimator PPML PPML PPML CF PPML CF

An observation is a destination country. The dependent variable is the number

of new robot installments in country d. Log Number of Sellersd is the log number

of robot sellers in country d. The first two columns show the second-stage PPML

estimates. The first two columns report the second-stage PPML control function

(CF) estimates. The instrument
(
IVd =

∑
o

1
log(distod)

)
is the total inverse log

distance in kilometers between the two most populated cities of country d and the

robot sellers’ HQ countries. Controls include the log GDP per capita (in 2010 USD

PPP), population, latitude, and longitude of country d. Heteroscedasticity-robust

standard errors in parenthesis. Significance levels: *** 0.01, ** 0.05, * 0.1.
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Table B.9. The Effects of an EU-wide Robot Tax Beyond the EU

Outcome Variable First Scenario Second Scenario % Change

Panel A: Robot Sellers

Number of Sellers Sd 0.000% 0.050%

Markups µ̄d 0.000% -0.003%

Panel B: Final Goods Producers

Robot Stock Rd 0.837% 0.735% -12.186%

Output Yd 0.835% 0.717% -14.132%

Panel C: Households

Consumer Price Index Pd 0.643% 0.813% 26.439%

Welfare Routine Wd(r) -0.418% -0.978% 133.971%

Welfare Non-Routine Wd(n) -0.419% -0.979% 133.652%

Income Inequality Ed(n)/Ed(r) 0.000% 0.000%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average non-EU

market. Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows

the effects on households. In the first scenario, robot sellers are unable to adjust their entry choices and markups once the

tax is implemented. In the second, they can change the set of markets served and the markups charged in each market.

In the first two columns, outcomes changes are relative to the initial equilibrium without tax. The last column displays

the percentage change in each outcome between the second and first scenario.
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Table B.10. The Effects of an EU-wide Robot Tax in the EU - Alternative
Tax Rates

Outcome Variable Tax = 2% Tax = 5% Tax = 7%

Panel A: Robot Sellers

Number of Sellers Sd -1.895% -2.287% -1.308%

Markups µ̄d 0.172% 0.239% 0.098%

Panel B: Final Goods Producers

Robot Price rd 2.284% 5.519% 7.731%

Robot Stock Rd -2.459% -5.675% -7.585%

Producer Price Index pd 0.798% 1.947% 2.854%

Output Yd -1.019% -2.362% -3.190%

Panel C: Households

Consumer Price Index Pd 0.374% 0.915% 1.424%

Welfare Routine Wd(r) 1.261% 2.968% 3.678%

Welfare Non-Routine Wd(n) -0.967% -2.290% -3.379%

Income Inequality Ed(n)/Ed(r) -2.193% -5.094% -6.793%

Note: The table summarizes the effects of different EU-wide value-added taxes on robot adoption in the

average EU market. Panel A shows the effects on robot sellers. Panel B shows the effects on final goods

producers. Panel C shows the effects on households. In the first scenario, robot sellers are unable to adjust

their entry choices and markups once the tax is implemented. In the second, they can change the set of

markets served and the markups charged in each market. In the first two columns, outcomes changes are

relative to the initial equilibrium without tax. The last column displays the percentage change in each

outcome between the second and first scenario.
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Table B.11. The Effects of an EU-wide Robot Tax Beyond the EU -
Alternative Tax Rates

Outcome Variable Tax = 2% Tax = 5% Tax = 7%

Panel A: Robot Sellers

Number of Sellers Sd 0.097% 0.050% 0.033%

Markups µ̄d -0.006% -0.003% 0.000%

Panel B: Final Goods Producers

Robot Price rd 0.473% 1.219% 1.661%

Robot Stock Rd 0.296% 0.735% 1.009%

Producer Price Index pd 0.476% 1.218% 1.660%

Output Yd 0.286% 0.717% 0.986%

Panel C: Households

Consumer Price Index Pd 0.311% 0.813% 1.086%

Welfare Routine Wd(r) -0.369% -0.978% -1.254%

Welfare Non-Routine Wd(n) -0.365% -0.979% -1.256%

Income Inequality Ed(n)/Ed(r) 0.004% -0.000% -0.002%

Note: The table summarizes the effects of different EU-wide value-added taxes on robot adoption in the

average non-EU market. Panel A shows the effects on robot sellers. Panel B shows the effects on final

goods producers. Panel C shows the effects on households. In the first scenario, robot sellers are unable to

adjust their entry choices and markups once the tax is implemented. In the second, they can change the

set of markets served and the markups charged in each market. In the first two columns, outcomes changes

are relative to the initial equilibrium without tax. The last column displays the percentage change in each

outcome between the second and first scenario.
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Table B.12. The Effects of an EU-wide Robot Tax in the EU - Alternative
Market Structure

Outcome Variable Bertrand Cournot Monopolistic Competition

Panel A: Robot Sellers

Number of Sellers Sd -2.287% -0.178% -3.318%

Markups µ̄d 0.239% 0.030% 0.823%

Panel B: Final Goods Producers

Robot Price rd 5.519% 5.289% 5.117%

Producer Price Index pd 1.947% 1.958% 1.445%

Output Yd -2.362% -2.068% -0.286%

Panel C: Households

Consumer Price Index Pd 0.915% 0.986% 0.824%

Welfare Routine Wd(r) 2.968% 2.563% 2.818%

Welfare Non-Routine Wd(n) -2.290% -2.327% -2.598%

Income Inequality Ed(n)/Ed(r) -5.094% -4.768% -5.261%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average EU market

under alternative market structure assumptions (Bertrand competition, Cournot competition, and monopolistic competition).

Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects on

households. In the first scenario, robot sellers are unable to adjust their entry choices and markups once the tax is implemented.

In the second, they can change the set of markets served and the markups charged in each market. In the first two columns,

outcomes changes are relative to the initial equilibrium without tax. The last column displays the percentage change in each

outcome between the second and first scenario.
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Table B.13. The Effects of an EU-wide Robot Tax Beyond the EU -
Alternative Market Structure

Outcome Variable Bertrand Cournot Monopolistic Competition

Panel A: Robot Sellers

Number of Sellers Sd 0.050% 0.006% 0.078%

Markups µ̄d -0.003% -0.001% -0.015%

Panel B: Final Goods Producers

Robot Price rd 1.219% 1.262% 0.949%

Producer Price Index pd 1.218% 1.262% 0.957%

Output Yd 0.717% 0.042% 2.238%

Panel C: Households

Consumer Price Index Pd 0.813% 0.737% 0.589%

Welfare Routine Wd(r) -0.978% -0.650% -0.573%

Welfare Non-Routine Wd(n) -0.979% -0.649% -0.562%

Income Inequality Ed(n)/Ed(r) -0.000% 0.000% 0.012%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average non-EU market

under alternative market structure assumptions (Bertrand competition, Cournot competition, and monopolistic competition).

Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects on

households. In the first scenario, robot sellers are unable to adjust their entry choices and markups once the tax is implemented.

In the second, they can change the set of markets served and the markups charged in each market. In the first two columns,

outcomes changes are relative to the initial equilibrium without tax. The last column displays the percentage change in each

outcome between the second and first scenario.
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Table B.14. The Effects of an EU-wide Robot
Tax on Different Sellers

HQ Change in the Number of EU Markets

Europe -0.735%

Asia -1.667%

Note: The table summarizes the effects of a 5% EU-wide value-

added tax on robot adoption in the average non-EU market for

sellers headquartered in different areas. All outcomes changes are

relative to the initial equilibrium without tax.
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Table B.15. The Complementarity Between Market Structure and Trade
Costs - Average EU Market

Outcome Variable Actual Trade Costs Low Trade Costs % Change

Panel A: Robot Sellers

Number of Sellers Sd -2.287% -2.763% 20.813%

Markups µ̄d 0.239% 0.375% 56.904%

Panel B: Final Goods Producers

Robot Price rd 5.519% 5.547% 0.507%

Robot Stock Rd -5.675% -6.478% 14.150%

Producer Price Index pd 1.947% 1.945% -0.103%

Output Yd -2.362% -2.492% 5.504%

Panel C: Households

Consumer Price Index Pd 0.915% 0.888% -2.951%

Welfare Routine Wd(r) 2.968% 3.072% 3.504%

Welfare Non-Routine Wd(n) -2.290% -2.232% -2.533%

Income Inequality Ed(n)/Ed(r) -5.094% -5.134% 0.785%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average EU market. Panel A

shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects on households. I

compare two scenarios. In the first, I leave trade costs at their level observed in the data. In the second, trade costs between all

country pairs are increased by 20%. In the first two columns, outcomes changes are relative to the initial equilibrium with actual

trade costs. The last column displays the percentage change in each outcome between the second and first scenario.
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Table B.16. The Complementarity Between Market Structure and Trade
Costs - Average non-EU Market

Outcome Variable Actual Trade Costs Low Trade Costs % Change

Panel A: Robot Sellers

Number of Sellers Sd 0.050% 0.051% 2.000%

Markups µ̄d -0.003% -0.004% 33.333%

Panel B: Final Goods Producers

Robot Price rd 1.219% 1.053% -13.618%

Robot Stock Rd 0.735% 0.792% 7.755%

Producer Price Index pd 1.218% 1.053% -13.547%

Output Yd 0.717% 0.774% 7.950%

Panel C: Households

Consumer Price Index Pd 0.813% 0.653% -19.680%

Welfare Routine Wd(r) -0.978% -0.670% -31.493%

Welfare Non-Routine Wd(n) -0.979% -0.670% -31.563%

Income Inequality Ed(n)/Ed(r) -0.000% 0.000%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption in the average non-EU market.

Panel A shows the effects on robot sellers. Panel B shows the effects on final goods producers. Panel C shows the effects on

households. I compare two scenarios. In the first, I leave trade costs at their level observed in the data. In the second, trade costs

between all country pairs are increased by 20%. In the first two columns, outcomes changes are relative to the initial equilibrium

with actual trade costs. The last column displays the percentage change in each outcome between the second and first scenario.
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Table B.17. An EU-wide versus a Worldwide Robot Tax

Outcome Variable EU-wide Tax Worldwide Tax

Panel A: EU

Number of Sellers Sd -2.287% -0.451%

Markups µ̄d 0.239% 0.051%

Robot Price rd 5.519% 5.433%

Robot Stock Rd -5.675% -2.046%

Producer Price Index pd 1.947% 2.079%

Output Yd -2.362% 1.172%

Consumer Price Index Pd 0.915% 1.726%

Welfare Routine Wd(r) 2.968% 0.422%

Welfare Non-Routine Wd(n) -2.290% -4.394%

Income Inequality Ed(n)/Ed(r) -5.094% -4.795%

Panel B: Non-EU

Number of Sellers Sd 0.050% -0.407%

Markups µ̄d -0.003% 0.031%

Robot Price rd 1.219% 6.010%

Robot Stock Rd 0.735% -4.762%

Producer Price Index pd 1.218% 2.649%

Output Yd 0.717% -1.636%

Consumer Price Index Pd 0.813% 1.742%

Welfare Routine Wd(r) -0.978% 0.964%

Welfare Non-Routine Wd(n) -0.979% -3.860%

Income Inequality Ed(n)/Ed(r) -0.000% -4.778%

Note: The table compares the effects of a 5% unilateral (EU-wide) and multilateral

(worldwide) value-added tax on robot adoption. Panel A shows the effects in the average

EU market. Panel B shows the effects in the average non-EU market. All outcomes changes

are relative to the initial equilibrium without tax.
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Table B.18. The Effects of an EU-wide Robot Tax Within EU and non-EU
Markets

Counterfactual EU Mean Q25 Median Q75

Panel A: Robot Stock, Rd

First Scenario 0 0.837% 0.000% 0.147% 0.190%

First Scenario 1 -4.898% -5.056% -4.346% -4.091%

Second Scenario 0 0.735% 0.013% 0.101% 0.514%

Second Scenario 1 -5.675% -6.853% -5.727% -5.377%

Panel B: Output, Yd

First Scenario 0 0.835% 0.000% 0.147% 0.190%

First Scenario 1 -1.794% -1.958% -1.225% -0.957%

Second Scenario 0 0.717% 0.004% 0.101% 0.375%

Second Scenario 1 -2.362% -3.062% -2.651% -2.224%

Panel C: Welfare Routine, Wd(r)

First Scenario 0 -0.418% -0.603% -0.308% -0.295%

First Scenario 1 3.349% 2.785% 3.188% 3.798%

Second Scenario 0 -0.978% -1.281% -1.164% -0.961%

Second Scenario 1 2.968% 2.587% 3.453% 4.719%

Panel D: Welfare Non-Routine, Wd(n)

First Scenario 0 -0.419% -0.603% -0.308% -0.296%

First Scenario 1 -1.573% -2.111% -1.726% -1.145%

Second Scenario 0 -0.979% -1.285% -1.149% -0.962%

Second Scenario 1 -2.290% -2.399% -1.474% -1.391%

Note: The table summarizes the effects of a 5% EU-wide value-added tax on robot adoption the across

EU and non-EU markets. Each panel refers to a different outcome, and I compare two scenarios. In

the first scenario, robot sellers are unable to adjust their entry choices and markups once the tax is

implemented. In the second, they can change the set of markets served and the markups charged in each

market. All outcomes changes are relative to the initial equilibrium without tax.
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Table B.19. The Effects of an EU-wide Robot Subsidy

Outcome Variable Value

Panel A: EU

Number of Sellers Sd 0.994%

Markups µ̄d -0.129%

Robot Price rd -5.155%

Robot Stock Rd 8.233%

Producer Price Index pd -1.856%

Output Yd 2.786%

Consumer Price Index Pd -0.991%

Welfare Routine Wd(r) -1.253%

Welfare Non-Routine Wd(n) 4.013%

Income Inequality Ed(n)/Ed(r) 5.335%

Panel B: Non-EU

Number of Sellers Sd -0.056%

Markups µ̄d 0.005%

Robot Price rd -1.041%

Robot Stock Rd -0.135%

Producer Price Index pd -1.042%

Output Yd -0.121%

Consumer Price Index Pd -0.670%

Welfare Routine Wd(r) 1.515%

Welfare Non-Routine Wd(n) 1.513%

Income Inequality Ed(n)/Ed(r) -0.002%

Note: The table summarizes the effects of a 5% EU-wide

value-added subsidy on robot adoption in the EU and be-

yond. Panel A shows the effects in the average EU market.

Panel B shows the effects in the average non-EU market.

All outcomes changes are relative to the initial equilibrium

without subsidy.
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Table B.20. Boosting Competition in the Robot Industry

Outcome Variable Lower Market Entry Costs New Robot Seller

Panel A: Robot Sellers

Number of Sellers Sd 5.111% 5.271%

Markups µ̄d -0.324% -0.395%

Panel B: Final Goods Producers

Robot Price rd -0.147% -16.366%

Producer Price Index pd -0.014% -15.980%

Output Yd 0.068% 17.746%

Panel C: Households

Consumer Price Index Pd -0.000% -18.489%

Welfare Routine Wd(r) -0.142% 1.576%

Welfare Non-Routine Wd(n) 0.059% 5.228%

Welfare Inequality Wd(n)/Wd(r) 0.204% 3.310%

Note: The table summarizes the effects of a 25% worldwide reduction in market-level entry costs and the addition of a new

robot seller to the set of potential incumbents. Panel A shows the effects on robot sellers. Panel B shows the effects on final

goods producers. Panel C shows the effects on households. All outcome changes are relative to the initial equilibrium with

the estimated entry costs and actual number of potential incumbents, respectively.
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C Additional Background

This appendix contains additional background information about the robot industry.

C.1 The Location of Production Facilities

I employ the following procedure to identify countries in which the top 10 multinational

robot manufacturers (see Section 3) have production facilities.

• Using the R package concordance,20 I identify that robots (HS 847959) are

produced by firms in the “Other General Purpose Machinery Manufacturing”

industry (NAICS 3339).

• Using Orbis, I construct the global network of subsidiaries of the top 10 robot

manufacturers. I identify 1032 subsidiaries in total. Next, I check the main sector

of activity of each subsidiary, as indicated by their NAICS code. This information

is non-missing for 819 (80%) subsidiaries.

• I select the subsidiaries reporting NAICS 3339 as their main industrial activity

in 2021, and I consider them as the manufacturers’ production facilities.

• I compute the number of production facilities per country.

The procedures identifies production facilities in the following countries: Belgium,

Canada, China, Czech Republic, Germany, Great Britain, Italy, Japan, Norway, Slo-

vakia, Slovenia, South Korea, Sweden, the Netherlands, and the US. I cross-check this

list with information about the export of robots from the BACII dataset. Reassur-

ingly, the correlation between the number of production facilities and the export value

of robots at the country level is 55%. The correlation is significant at the 1% level.

C.2 Technological Requirements for Robot Production

Robot production involves three main stages: design, fabrication, and assembly. The

design stage has high technological requirements. Fabrication and assembly are capital-

intensive activities, and robots are usually assembled by other robots. Three elements

suggest that high initial sunk and fixed production costs can help explain the concen-

tration in robot sales documented in Section 3.
20Steven Liao, In Song Kim, Sayumi Miyano, Hao Zhang (2020). concordance: Product Concor-

dance. R package version 2.0.0. https://CRAN.R-project.org/package=concordance
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• The top 10 robot producers started developing robots around 50 years ago. For

instance, ABB launched its first robot in 1978, Fanuc in 1974, Kuka in 1973, and

Yaskawa in 1977. The other six firms in the top 10 started producing robots

between the end of the 1970s and the beginning of the 1980s. These information

comes from the sellers’ websites.

• Using Orbis, I find that the average top 10 robot producer reports a share of

R&D expenses over sales equal to 3.5%. For reference, the average non-top 10

producer registered with the IFR reports a share of 2.8%. It is also useful to

benchmark this share against that reported by firms in other sectors. To do so, I

compute the share of R&D expenses over sales for the top 500 firms in Orbis in

terms of sales, employment, and fixed assets. This set includes Apple, Alphabet,

Microsoft, among others. Notably, no top 10 robot producer belongs to this list.

Although the average top 500 firm in Orbis reports 12 times higher sales than

the average top 10 robot producer, its share of R&D expenses over sales is equal

to 2.9%, which is 6 percentage points lower than that of the average top 10 robot

producer.

• Using Orbis Intellectual Property (IP), a Bureau van Dijk’s dataset containing

information about patents and their ownership, I find that concentration in sales

aligns with concentration in patents. I proceeded in three steps:

– I download from Orbis IP all patents that contain the word “industrial

robots” in the title, abstract, or description.

– Whenever not reported in English, I translate the patent assignee name

using the Google Translate R API.21 Then, I match patents to their owners

in Orbis.

– Among the 26 firms registered with the IFR, the top 10 accounting for 90%

of global sales also hold 81% of the stock of active patents in 2021. Their

patents also receive more citations on average (4 for the top 10 sellers vs.

3.3 for the others) and have longer expiry dates (nine years for the top 10

sellers vs. three years for the others).

21See https://github.com/ropensci/googleLanguageR.
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C.3 Case Studies about Integration Services

Case studies available on the sellers’ websites illustrate the central role of integration

services. The typical case study describes a firm seeking help to automate parts of its

production (e.g., stacking crates, handling products, or lifting components), and how

a local branch of a robot seller helped the firm by selecting a standardized robot and

tailoring it to its needs. I provide three examples below:

• A Swiss firm producing turf wanted to automate the operation of palletizing is

harvest. To do so, the company resorted to the help of a Swiss branch of Fanuc

who adapted and mounted a robot to the rear of an harvester to facilitate the

palletization of turf rolls. Additional details can be found here.

• A Brazilian meat producer wanted to develop an automated high-speed line for

producing and handling simultaneously different types of meat. To achieve this

goal, the company contacted a Brazilian branch of ABB, who installed different

robots at the meat producer’s plant to pick both light and heavy products and

palletizing them. Additional details can be found here.

• A food company approached a US branch of KUKA to automate the process

of stacking milk crates on pallets in the cold storage warehouse. The branch

selected a suitable robot for the company and customized it to be able to work

in a unusually cold environment. Additional details can be found here.
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D Data Appendix

This appendix contains additional information about the data.

D.1 Web Scraping Algorithm

I construct the global sales network of the top 10 multinational robot sellers identified

in Section 3 using the following procedure:

• I access the “Where to Find Us” section on the firms’ websites, where they provide

information about their global footprint. Typically, firms list the location of their

HQ, sales branches of robots and other products, education and training centers.

• Using the Python library Selenium,22 I web scrape the name and geographical

address of each entity listed in that section. Whenever available, I also collect

additional information (e.g., product sold and services offered).

Data cleaning involves two steps:

• I separate sales branches where costumers can purchase robots and integration

services from entities performing other activities (e.g., training or production

centers, consumers’ help desks, and research laboratories). This step is uncon-

troversial since companies report this information on their website.

• I distinguish between branches selling robots and providing integration services

and those commercializing other products (e.g., precision machinery, engines,

generators, drives, and computer systems). This step is straightforward when

companies directly report the information on their websites. However, in cases

where the information is not explicitly stated, I apply the following conservative

rules. First, if the branch name hints at non-robot sales (e.g., contains “electronic

provider”), I exclude it from the sample. Second, I exclude branches located in

countries where the IFR does not document any robot usage. I keep branches

selling both robots and other products.

D.2 Measurement of Market Shares

Information about sales is available for 300 (55%) of the 538 branches that can be

found in Orbis. Using this sub-sample, I can compare two measures of market share.

22See https://github.com/seleniumbase/SeleniumBase.
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The first is based on the number of branches that a seller has in a country. Formally:

s
(1)
sd =

bsd∑
s∈Sd bsd

.

bsd is the number of branches of seller s in country d, and Sd is the set of sellers selling

in d. The second measure is based on the sales of the branches that a seller has in a

country. Formally:

s
(2)
sd =

∑
b∈Bsd vb(s)d∑

s∈Sd

∑
b∈Bsd vb(s)d

.

vb(s)d denotes sales of branch b belonging to seller s in country d in USD millions. Bsd

is the set of branches that s has in d. The Pearson correlation between s
(1)
sd and s

(2)
sd is

67%∗∗∗. The Spearman correlation is 53%.

The first two columns of Table D.1 show that the positive and significant correlation

between the two measures is robust to controlling for seller and country fixed effects.

Because country fixed effects absorb the denominators of s
(1)
sd and s

(2)
sd , there is also a

positive correlation between the number of branches and sales in (log) levels, as shown

by the last two columns of the table.

Overall, sellers with more branches also appear to sell more. I prefer s
(1)
sd over s

(2)
sd

because it can be constructed for more seller-market pairs.
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Table D.1. Measuring Market Shares

Dependent Variables: Mkt Share (Sales)sd Log Salessd

(1) (2) (3) (4)

Mkt Share (Branches)sd 0.83∗∗∗ 0.48∗∗

(0.07) (0.24)

Log Branchessd 1.1∗∗∗ 0.77∗∗∗

(0.19) (0.25)

Country FE No Yes No Yes

Seller FE No Yes No Yes

Observations 133 133 133 133

R2 0.45 0.55 0.22 0.64

Within R2 0.06 0.10

Estimator OLS OLS OLS OLS

Note: An observation is a robot seller-destination country pair.

Mkt Share (Sales)sd is the market share of seller s in country d based on

the sales of its branches. Mkt Share (Branches)sd is the market share of seller

s in country d based on its number of branches. Log Salessd are the total

sales of the branches of seller s in market d. Branchessd is the number of

branches of seller s in country d. Heteroscedasticity-robust standard errors

in parenthesis. Significance levels: *** 0.01, ** 0.05, * 0.1.
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D.3 Data Validation

I validate the own-collected information about global sales networks against three es-

tablished data sources (IFR, BACII, and Orbis).

• I estimate the following country-level equation:

Robotsd = α + β Branchesd + γ Controlsd + εd.

Robotsd is the number of robots in country d reported by the IFR. Branchesd is the

self-collected number of multinational sellers’ branches in country d. Controlsd

include Log GDP per capita. εd is the error term. Table D.2 shows the estimates.

Number of Branchesd explains 57%-58% of the variation in Number of Robotsd.

Table D.2. Robots vs Branches

Dependent Variable: Robotsd

(1) (2)

Branchesd 0.62∗∗∗ 0.63∗∗∗

(0.21) (0.21)

Controls No Yes

Observations 45 45

R2 0.56 0.57

Estimator OLS OLS

Note: An observation is a destination country.

Robotsd is the number of robots in country d.

Branchesd is the number of branches in country

d. Controls include include the GDP per capita

(in 2010 USD PPP). Heteroscedasticity-robust

standard errors in parenthesis. Significance lev-

els: *** 0.01, ** 0.05, * 0.1.

Additionally, Corr(Branchesd,Robot Stockd) = 75%∗∗∗.

• I estimate the following equation bilateral equation:

Trade in Robotsod = β Branchesod + γ Controlsod + FEo + FEd + εod.
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Trade in Robotsod is the export value of robots (HS 847950) from o to d in mil-

lion current USD reported in the BACI dataset. Branchesod is the self-collected

number of branches that multinational sellers headquartered in o open in d.

Controlsod include Log of bilateral distance in kilometers. FEo are origin fixed

effects, FEd destination fixed effects, and εod the error term. Table D.3 shows

the estimates. Even after controlling for origin and destination fixed effects, as

well as bilateral distance, Number of Branchesod explains 61% of the within R2

of Trade in Robotsod.

Table D.3. Trade vs Branches

Dependent Variable: Trade in Robotsod

(1) (2) (3)

Branchesod 10.5∗∗∗ 11.8∗∗∗ 11.3∗∗∗

(3.8) (3.9) (3.9)

Origin FE No Yes Yes

Destination FE No Yes Yes

Controls No No Yes

Observations 133 133 133

R2 0.60 0.75 0.75

Within R2 0.61 0.61

Estimator OLS OLS OLS

Note: An observation is an origin-destination country

pair. Trade in Robotsod is the export value of robots (HS

847950) from o to d in million current USD. Branchesod is

the self-collected number of branches that multinational

sellers headquartered in o open in d. Controls include

Log of bilateral distance in kilometers. Heteroscedasticity-

robust standard errors in parenthesis. Significance levels:

*** 0.01, ** 0.05, * 0.1.

Additionally, Corr(Branchesod,Trade in Robotsod) = 77%∗∗∗.

• I estimate the following seller-country level equation:

Bs(o)d = β Ss(o)d + FEs + FEd + εs(o)d.
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Bs(o)d is either an indicator equal to 1 if multinational seller s from HQ o has

at least one branch in country d (extensive margin) or the number of branches

that s has in country d (intensive margin). Ss(o)d is either an indicator equal

to 1 if seller s from HQ o has at least one subsidiary in country d (extensive

margin) or the number of subsidiaries that s has in country d (intensive margin).

Subsidiaries include those unrelated to robots, as reported in Orbis. FEs and

FEd are seller and country fixed effects, and εs(o)d the error term. Table D.4

shows the estimates. The presence of sales branches is positively correlated with

the presence of subsidiaries, even after controlling for FEs and FEd.

Table D.4. Branches vs Subsidiaries

Dependent Variables: Branch Dummysd Branchessd

(1) (2) (3) (4)

Subsidiary Dummysd 0.44∗∗∗ 0.32∗∗∗

(0.03) (0.04)

Subsidiariessd 0.16∗∗∗ 0.10∗∗

(0.06) (0.05)

Country FE No Yes No Yes

Seller FE No Yes No Yes

Observations 920 920 155 155

R2 0.24 0.57 0.14 0.52

Within R2 0.11 0.05

Estimator OLS OLS OLS OLS

Note: An observation is a robot seller-destination country pair.

Branch Dummys(o)d is an indicator equal to 1 if seller s from HQ o has

at least one branch in country d. Subsidiary Dummys(o)d is an indicator

equal to 1 if seller s from HQ o has at least one subsidiary in country

d. Branchess(o)d is the number of branches that seller s from HQ o has

at least one branch in country d. Subsidiariess(o)d is the number of sub-

sidiaries that seller s from HQ o has at least one branch in country d.

Heteroscedasticity-robust standard errors in parenthesis. Significance

levels: *** 0.01, ** 0.05, * 0.1.

Additionally, Corr(Subsidiariess(o)d,Branchess(o)d) = 48%∗∗∗ at the extensive

margin and 38%∗∗∗ at the intensive margin.
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E Theoretical Appendix

E.1 Multi-Branch Multinational Robot Sellers

I extend the model presented in Section 5 to feature multi-branch multinational robot

sellers. While this model delivers similar predictions as the baseline one, it provides

a micro-foundation for the fact that sellers that open more branches in a market also

sell more robots.

Nested Robot Demand. I assume that seller s in market d supplies an indivisible

bundle of generic robots and integration services, which I refer to as a “product” and

define by Řsd. In turn, this product is a bundle of the varieties offered by branches b of

seller s in market d, which I denote Rb(s)d. Formally, Rd used by final goods producers

defined as:

Rd =

(∑
s∈Sd

φ
1
σ
sdŘ

σ−1
σ

sd

) σ
σ−1

, Řsd =

(∑
b∈Bsd

R
ρ−1
ρ

b(s)d

) ρ
ρ−1

, ρ ≥ σ > 1. (E.1)

Notation follows from equation (9). Combining the first-order conditions of equations

(8) and (E.1), the demand faced by each branch can be expressed as:

Rb(s)d = φsdr
−ρ
b(s)dř

ρ−σ
sd rσ−1d βῑdpdYd. (E.2)

rb(s)d is the price charged by branch b of seller s in market b, rsd is the price index of

seller s in market d, and rd is the market-level price of robots. Branches internalize the

effect of their choices on the sector price index rd but not on economy-wide variables.

Profit Maximization. Sellers choose the number of branches to open in each market

and the prices charged by each of their branches. Let Bsd be the set of branches that

s operates in d. I assume that seller s in market d solves the following problem:

max
{rsd,bsd}≥0

∑
b∈Bsd

(rb(s)d − wd(n))Rb(s)d − wd(n)
b
1+ 1

λ
sd

1 + 1
λ

− wd(n)f, λ > 0 (E.3)

s.t. equation (E.2) (E.4)

b
1+ 1

λ
sd /

(
1 + 1

λ

)
is a convex cost of opening branches.
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Equilibrium Conditions. Since demand shifters φsd are seller-by-market specific

and retail costs wd(n) market-specific, sellers equalize the markups charged by their

branches, which gives rise to a symmetric pricing rule within sellers in equilibrium.23

Hence, the demand function in equation (E.2) can be expressed as:

Rsd = φsdr
−σ
sd b

ρ−σ
1−ρ
sd rσ−1d βῑdpdYd. (E.5)

The sellers’ maximization problem can be formulated as:

max
{rsd,bsd}≥0

(rsd − wd(n))bsdRsd − wd(n)
b
1+ 1

λ
sd

1 + 1
λ

− wd(n)f, λ > 0 (E.6)

s.t. equation (E.5). (E.7)

The first-order conditions associated with this problem deliver the following equilibrium

expressions for the price of robots and number of branches:

rsd =
εsd

εsd − 1
wd(n), bsd =

[
(rsd − wd(n))(σ − 1)(1− ssd)R̃sdφsd

(ρ− 1)wd(n)

]λ
. (E.8)

R̃sd is quality-adjusted robot demand. The market share of seller s in market d is:

ssd =
φsdb

1−ρ
1−σ
sd r1−σsd∑

s∈Sd φsdb
1−ρ
1−σ
sd r1−σsd

. (E.9)

All else equal, sellers with higher φsd open more branches, sell more robots, and charge

higher markups.

Closing the Model. The other equilibrium conditions are unchanged, except for

the non-routine labor market clearing condition which now reads:

L̄d(n) =
(1− β)pdYd
wd(n)

+Rd +
∑
s∈Sd

b
1+ 1

λ
sd

1 + 1
λ

+ |Sd|f. (E.10)

23This equilibrium condition parallels the one derived by Hottman, Redding and Weinstein (2016)
for multi-product firms.
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E.2 A Task-Based Approach to Final Good Production

In this section, I summarize the argument established by Guerreiro et al. (2022) to

derive equation (8) from a task-based model as in Acemoglu and Restrepo (2018). Let

the production function of final goods producers be, for ρ > 1 and β ∈ (0, 1):

Yd = Ad

(∫ 1

0

yd(ι)
ρ−1
ρ dι

) βρ
ρ−1

Ld(n)1−β. (E.11)

Each task can be performed by a robot bundle Rd(ι) and/or routine workers Ld(r, ι):

yd(ι) = 1{ιd ≤ ῑd}γd(ι)Rd(ι) + ψd(ι)Ld(r, ι), (E.12)

being γd(ι) and ψd(ι) the productivity or robots and routine workers, respectively.

Equation (E.11) clarifies that tasks ιd ≤ ῑd can be performed by robots and routine

workers. By contrast, tasks ιd > ῑd can be only performed by routine workers. As

Guerreiro et al. (2022), I introduce the following assumption:

Assumption 1. γd(ι) = ζι
η−1
η

d and ψd(ι) = ζ(1− ιd)
η−1
η , with ζ =

(
1 + (η−1)(ρ−1)

η

) 1
ρ−1

and (1− η)(ρ− 1) < η.

Under this assumption, Guerreiro et al. (2022) show that there exists a unique

pivotal task ῑd such that robots are employed in tasks ι ≤ ῑd and labor elsewhere. The

pivotal task reads:

ῑd =
Rη
d

Rη
d + Ld(r)η

∈ (0, 1). (E.13)

Moreover, equation (E.11) boils down to equation (8). The producer price index in the

final good sector is, for β̄ = β−β(1− β)β−1:

pd =
β̄

Ad

[
ῑηdr
−η
d + (1− ῑd)ηwd(r)−η

]−β
η wd(n)1−β. (E.14)

rd is the rental price of robots in market d.
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E.3 Alternative Marginal Cost Specifications

The baseline model assumes that robot sellers only need local non-routine workers to

sell products (i.e., indivisible bundles of generic robots and integration services). I

impose this assumption to abstract from the production and exports of generic robots

and focus on competition in sales in destination markets. In this section, I discuss how

to allow for production and trade in generic robots.

Accounting for Production and Trade in Generic Robots. Generic robots

are produced by MNEs in their HQ market o, exported to a destination market d, and

sold there bundled with integration services. MNEs need non-routine labor to produce

generic robots in o.24 As in the baseline model, selling generic robots bundled with

integration services in d requires local non-routine labor. In this case, the marginal

cost of selling robots in market d is:

todwo(n)γwd(n)1−γ, γ ∈ (0, 1). (E.15)

Let tod = 1 if o = d and tod ≥ 1 if o 6= d. This term captures the trade cost that MNE s

from market o faces when selling robots in a foreign market d. This specification implies

that entry in the robot sector of market d is constrained both by the available amount

of non-routine workers in d as well as in the HQ country, and equation (23) should

be modified accordingly. If robot production requires paying a fixed cost in terms of

non-routine labor in the HQ country, this cost must be subtracted from MNEs’ profits

in equation (10).

24This assumption can be relaxed to allow robot production require both routine and non-routine
workers in the HQ.
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E.4 Derivations

This section shows the derivations generating Figure 5.

Entry Reduces Incumbents’ Prices. The price of any symmetric incumbent robot

seller is, for w(n) = 1:

r = µ =
σ − (σ − 1) 1

|S|

σ − (σ − 1) 1
|S| − 1

. (E.16)

Therefore:

∂r

∂|S|
|S|
r

=
∂ log r

∂|S|
|S| =

(
(σ − 1)(ε− 1) 1

|S|2 − (σ − 1)ε 1
|S|2

µ(ε− 1)2

)
|S| (E.17)

=
(1− σ)

ε(ε− 1)2|S|
< 0. (E.18)

Entry Reduces the Aggregate Robot Price. The log of the aggregate price of

robots is:

log ř =
1

1− σ
log |S|+ log r +

1

1− σ
log φ. (E.19)

Therefore:

∂ř

∂|S|
|S|
ř

=
∂ log ř

∂|S|
|S| =

(
1

(1− σ)|S|
+

1

r

∂r

∂|S|

)
|S| (E.20)

=
1

(1− σ)
+

∂r

∂|S|
|S|
r

(E.21)

=
1

(1− σ)
+

(1− σ)

ε(ε− 1)2|S|
< 0. (E.22)

Entry Reduces the Price Index. The log of the aggregate price index is:

log p = log

(
β̄

A

)
+ β log ř (E.23)

Therefore:

∂p

∂|S|
|S|
p

=
∂ log p

∂|S|
|S| = β

∂ř

∂|S|
|S|
ř

=
β

(1− σ)
+

β(1− σ)

ε(ε− 1)2|S|
< 0. (E.24)
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F Quantitative Appendix

F.1 Algorithm to Solve the Model

Given the parameters in Table 2, the model can be solved using the following algorithm:

1. Guess a value of wd(n) and rd for each market as well as aggregate profits Π;

2. Set rd = wd(r);

3. Find pd = β̄wd(r)
βwd(n)1−β/Ad, β̄ = β−β(1− β)β−1;

4. Find Yd using equation (21);

5. Find ῑd using equation (22);

6. Compute the expenditure on robots βῑdpdYd in each market;

7. Solve the sellers’ sequential entry game market-by-market:

(a) Let S = 1. Use a fixed-point search to find rsd from equation (16);

(b) Compute profits πsd;

(c) If πsd > wd(n)f , let S = 2 and repeat from (7.a);

(d) Stop when last entrant would make negative profits.

8. Find a new vector of market-level robot prices r′d and aggregate profits Π′;

9. Find a new vector of market-level non-routine wages wd(n)′ (up to a numéraire);

10. Iterate until ||rd − r′d|| < tol, ||wd(n)− wd(n)′|| < tol, and |Π− Π′| < tol.

When searching for the fixed point of the robot sellers’ problem and the GE allocation,

I follow Gaubert and Itskhoki (2021) and update prices taking a half step between the

old guess and the new one at each iteration.

Notice that equation (16) is only defined for S ≥ 2. When initializing the inner loop

to solve the sellers’ problem, I modify equation (16) assuming that the seller behaves

as a local monopolist. In this case, the optimal pricing rule can be written as:

rsd =
σ

σ − 1
wd(n). (F.25)

85



F.2 Simulated Method of Moments Algorithm

The SMM procedure to find the parameters to be estimated in Table 2 reads as follows:

1. Draw B matrices with dimension |S| × |M| of normally distributed i.i.d. shocks

with mean zero and unit variance, being |S| the total number of sellers and |M|
the total number of markets. I use Sobol sequences to cover the support of the

normal distribution more efficiently than if numbers were drawn at random. In

practice, I set B = 200;

2. Guess a vector of parameters Θ;

3. For each of the B matrices of random shocks:

(a) Compute demand shifters using equation (28);

(b) Solve the model using the algorithm described in Section F.1;

(c) Compute the model-implied moments of interest and store them.

4. Compute the average model-implied moments of interest across the B samples.

Denote m(Θ) the resulting vector;

5. Update the guess of Θ to minimize the SMM objective function L(Θ) = (m(Θ)−
m̄)′W (m(Θ)− m̄).

In operationalize this procedure in two steps. First, I adopt an adaptive radius lim-

ited differential evolution algorithm to find the starting values of the SMM routine.25

Second, I run a local search using a standard quasi-Newton algorithm around these

values. In practice, this second step stops after a few iterations and only marginally

reduces the SMM objective function.

The standard errors in Table 2 are computed using the bootstrap procedure of

Bernard et al. (2022). The procedure is performed as follows. First, for each bootstrap

sample, I draw sellers and markets with replacement until I obtain the same sample size

as in the data. Second, I compute the empirical moments used in the SMM procedure

for each bootstrap sample. Third, I estimate the model parameters at each sample

using the procedure described above. The standard errors in Table 2 are the standard

deviation of the distribution of the estimates across samples. I employ 200 replications.

25This algorithm is available through the Julia package BlackBoxOptim.jl, and it is shown to
perform well in finding the global minimum of non-linear problems.
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F.3 Counterfactual Scenario: Robot Tax

Algorithm. I modify the algorithm in Section F.1 to account for the presence of a

tax as follows:

1. Guess a value of wd(n) and rd for each market as well as aggregate profits Π and

total tax transfers TEU =
∑

d∈M 1{d ∈ EU}tdrdRd;

2. Set rd = (1 + τd)wd(r);

3. Find pd = β̄wd(r)
βwd(n)1−β/Ad, β̄ = β−β(1− β)β−1;

4. Find households’ disposable income Ed(i) using equation (6);

5. Find Yd using equation (21);

6. Find ῑd using equation (22);

7. Compute the expenditure on robots βῑdpdYd in each market;

8. Solve the sellers’ sequential entry game market-by-market:

(a) Let S = 1. Use a fixed-point search to find rsd from equation (16);

(b) Compute profits πsd;

(c) If πsd > wd(n)f , let S = 2 and repeat from (7.a);

(d) Stop when last entrant would make negative profits.

9. Find a new vector of market-level robot prices r′d, aggregate profits Π′, and tax

transfers T ′EU ;

10. Find a new vector of market-level non-routine wages wd(n)′ (up to a numéraire);

11. Iterate until ||rd − r′d|| < tol, ||wd(n) − wd(n)′|| < tol, |Π − Π′| < tol eand

|TEU − T ′EU | < tol.

Also in this case, I update prices taking a half step between the old guess and the

new one at each iteration. As before, I modify equation (16) assuming that the seller

behaves as a local monopolist when Sd = 1.
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First Scenario. In the first scenario, the counterfactual outcomes are computed as

follows:

1. For each of the B matrices of φsd demand shifters used in the SMM procedure

(see Section F.2):

(a) Solve the model without tax using the algorithm described in Section F.1;

(b) Store the number of sellers per market Sd and their demand shifters φsd;

(c) Find the equilibrium of the model without and with tax given Sd and φsd.

This can be done by using the algorithm described in the paragraph at the

beginning of Section F.3 but skipping step 8;

(d) Compute the percentage changes in the outcomes of interest between equi-

libria.

2. Compute the average change in the outcomes of interest across the B draws.

Second Scenario. In the second scenario, the counterfactual outcomes are computed

as follows:

1. For each of the B matrices of φsd demand shifters used in the SMM procedure

(see Section F.2):

(a) Solve the model without tax using the algorithm described in Section F.1;

(b) Solve the model with tax using the algorithm described in the paragraph at

the beginning of Section F.3;

(c) Compute the percentage changes in the outcomes of interest between equi-

libria.

2. Compute the average change in the outcomes of interest across the B draws.

I assume that a robot tax is implemented before robot sellers make entry choices.

In the first scenario, this choice is inconsequential because entry choices and markups

are held constant. In the second, it requires solving the problem of robot sellers in

an economy without and with taxes (i.e., one in which τd = 0 everywhere and one in

which τEU = 5%).
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F.4 Counterfactual Scenario: Competition Policy

I use the algorithm in Section F.1 to solve for the new equilibrium. When reducing

entry costs while keeping the number of robot sellers constant, I simply discount the

parameter f before solving the model. To simulate the entry of a new Asian robot

seller, I add a row to the matrix of demand shifters in equation (28). I assign to this

new robot seller φH as average appeal. The distance from China to each country comes

from the data. Error terms are sampled from the N(0, 1) distribution.
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