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ORDINAL INDEPENDENCE IN NON·-LINEAR UTILITY TIIEORY 

ABSTRACT 

Individual behavior under uncedainty is char·acterizcd usirig a new 
ax i om, ordinal i ndependence, wh i ch i s a weakened fo1'm of the von Neumann -
Morgenstern indcpendcnce axiorn. It states that if two dislr-ibutions shar·e a 
"tail" in comrnon, then this tail can be modified without altei'ing the 
i ndiv·idua l 's pr·ef cr'ence bctween these d·i stribut. i ans. Preference i s 
determined by the tail on which the distributions differ. This axiom implies 
an appealing and simple functional form for· a numcr'ical n'!presentation of 
preferences. It generalizes the form of "anticipated utility", and it 
explains some well-known forms of behav'ior', such as the h'iedman--Savage 
paradox, that anticipated utility cannot. 

Kevwords Cho i ce und cr uncerta i nty, i ndependence ax i om, non- 1 fr,ear ut i 1 ity 

,JEL code 020 

INDEPENDANCE ORDINALE EN THEORIE NON-LINEAIRE DE L'UTILITE 

RESUME 

Le comportement d'un individu en face de l'incertain est caractérisé 
au moyen d'un nouve 1 ax i orne, 1' indépendance ord i na 1 e. Cet ax i orne est une 
version affaiblie de l'axiome d'indépendance de von Neumann-Morgenstern. Il 
stipule que si les cumulatives de deux distributions onl une "queue" en 
commun, cette queue peut être modifiée sans altérer' les pr·éférences de 
l'individu entre les distributions. Les préférences sont déterminées par la 
portion des cumulatives sur laquelle les distributions diffêrent. Cet axiome 
implique comme représentation nume1'1que des préférences une forme 
fonctionnelle s·imple et. attractive. Cette forn1e généralise la forme de 
"l'utilité anticipée", et permet de rendi~e compte de certains types bien 
c..onnus de comportement, tel que le:: paradoxe de Fr-iedrnann-Savage, que la 
théorie de l'utilité anticipée ne peut pas expliquer. 

Mols c lcf 
linéai1'e 

Choix sous ü1cerl.Hude, axiome d'indépendance, ut-ilité non-



1. Introduction 

Ordinal Independence in Non-Linear Utility Theory 

by Jerry R. Green and Bruno Jullien 

Recent research in the theory of individual decision making under uncertainty has 

developed in three directions. All of these are outgrowths of and reactions to the empirical 

refutation of expected utility theory that is widely acknowledged. 

First, there are attempts to describe the decision making process by examining 

aspects other than the probability distribution over the ultimate payoffs. Research in this 

direction uses variations in the description of the decision problem, the temporal resolution 

of the uncertainty or of the payoffs themselves, as important ingredients that can affect the 

individuals' choice.1 

Second, there are models that look only at the probability distribution of payoffs, 

and impose normative axioms on choices between distributions.2 The present paper falls in 

this category. 

The final group of models also looks only at the probability of various consequences. 

Here, however, an attempt is made to keep normative axioms to a minimum and to see 

how much flexibility can be maintained while at the same time explaining observed 

phenomena. The pioneering paper in this line of work is Machina (1982). 

This paper introduces an axiom related to, but weaker than, the independence 

axiom of expected utility theory. We substitute this weaker axiom and obtain a numerical 

representation for preferences over distributions of payoffs. Naturally, this family of 

functionals includes the linear functionals of the expected utility family. It also includes 

the "anticipated utility" representation of Quiggin (1982), Segal (1984) and Yaari (1987). 

It is disjoint from the quasi-linear family of preferences studied by Dekel (1986), Chew and 

1Kahneman and Tversky (1979) and (1984), Loomes and Sugden (1982), Segal (1987). 
2Chew and MacCrimmon (1979), Chew (1983), Segal (1984), Dekel (1986) and others. 
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MacCrimmon (1979), and Gul (1988) except that both contain expected utility as a special 

case. 

There are two reasons for being interested in this axiom and the resulting 

representation. The first is that although anticipated utility can account for some of the 

observed violations of expected utility theory, it cannot account for all of them. In 

particular, the famous phenomenon of Friedman and Savage (1948), in which an 

individual's risk preferences seemingly depend on his status quo level of wealth, cannot be 

explained within the anticipated utility framework but can be explained by ours. 

Second, and perhaps more importantly, we find the axiom itself intuitively 

appealing - more so than the necessarily stronger anticipated utility axiom. It is of 

interest to learn its implications. Part of the reason for the intuitive appeal of this axiom 

is that it bears some resemblance to psychological concepts of editing. One way in which 

the comparison between two decision problems can be simplified is to eliminate from 

consideration some values of payoffs on which the two payoff distributions coïncide, and to 

determine preferences over these distributions by looking at the part of the payoff space on 

which the conditional distributions differ. Thus the common part of the space is "edited 

out". We apply this logic when the common part of the space is a half-line: If F and G 

coïncide either above or below some point, then the preference between F and G is 

determined by their restriction to the complementary half-line, on which they differ. 



2. Ordinal Independence 

The basic axiom introduced in this paper is called ordinal independence. It applies 

to spaces of payoffs that are naturally ordered, such as the real numbers. For simplicity, 

we assume that payoffs are in a bounded interval of real numbers, X = [x, x]. Let the 

space of probability distributions over X be denoted D. The elements of D will be 

identified with their cumulative distribution fonctions and will be denoted F, G, H, ... 

Preferences on D will be described by a binary relation t. We assume that >- is 

complete, transitive and continuous. 

Complete Weak Ortler 

The binary relation t on D is a complete weak order: For all F,G E. D, 

either F t G or G t F. And if F t G and G t H, then F t H. 

Continuity 

The binary relation is continuous in the weak topology on D. 

Monotonicity 

If F (first-order) stochastically dominates G, then F t G. 

To these standard conditions we add the axiom of ordinal independence which can 

be stated as follows: 

Ordinal Independence 
A 

If F t G and F(x) = G(x) for x ~ x (resp. x < x), and if 
A A 

F(x) = F(x) and G"(x) = G(x) for all x < x (resp. x ~ x) and F(x) = U(x) for 
A A 

X~ X (resp. X< x), then F t G". 

This condition is a limited type of independence axiom. Let H and H' be 
A 

distributions with support bounded above by x and let F and G be distributions with 

support bounded below by x. Then, if the decision maker is indifferent between 

3 
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(X F + (1 - (X)H and (X G + (1.x)H, he is also indifferent between (X F + (1 - (X)H' and 

(XG + (1 - (X)H'. 

These substitutions preserve indifference if, and in general only if, the support of the 

conditional distribution being substituted lies entirely above or entirely below the support 

of the distributions conditional on the complementary event. 



3. Representation Theorem 

In this section we present the principal representation theorem for preferences 

satisfying the assumptions discussed in section 2. We will relate the conclusions of this 

theorem to both anticipated utility and to expected utility, which are successively special 

cases. 

We begin by stating the theorem and its principal corollary. These state two 

equivalent closed-form expressions for a numerical index of the preference relation. 

Theorem 3.1 

If t satisfies complete weak order, continuity, monotonicity and ordinal 

independence, then there exists a function 1: X x [0,1)-+ IR such that "?>(O,p) = 0, "?> is 

non--decreàsing in x, and a measure µ on [0,1] such that 

1 
V(F) = J 1J(z(p),p) dµ(p) 

0 

is a numèrical representation of t, where 

z(p)= inf{xEX I F(x)~p} 

Moreover, µ has a continuous distribution function and "?> is continuous on its domain. 

Corollary 

Under the hypotheses of theorem 3.1, an alternative representation is 

V(F) = J li(x,F(x)) dv(x) 

where li(x,1) = 0, and li is non-increasing in p. Moreover, v has continuous 

5 
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distribution function and li is continuous on its domain. 

The meaning of the representations can be seen as follows. We can think of 

?> (z(p),p) as itself being an integral of some function (this will be called µ2 in the proof 

(see appendix), but let us here denote it by ((x,p): 

?>(z(p),p) 
z(p) 

f ((x,p)dx. 
0 

Thus the numerical utility indicator is an integral of ((x,p) over the epigraph3 of the 

distribution function as shown below, and with respect to a measure µ on [0,1 ]. 

p 

11-------------------~..---

Figure (3.1) 

In anticipated utility theory the function ((x,p) becomes multiplicatively separable: 

((x,p) = ( (x)( (p). And, if we incorporate ( (p) into the measure µ, we obtain an 
1 2 2 

expression analogous to that of Segal (1984), Chew, Kami and Safra (1987) and Yaari 

(1987): 

3The idea of using a measure on the epigraph of F as a representation of preferences is due 

to Segal (1984). See also Chew and Epstein (1987). 



where 

V(F) = J u(x)d(goF(x)) = Ju(z(p))dg(p) 

dg(p) = (/p)dµ(p) 

u(x) = ( (x) 
1 

Expected utility theory is the further special case in which ( and µ, when so combined, 
2 

produce a uniform distribution over [0,1]. Then, substituting p = F(x), one can obtain 

the usual formula. 

J (1(z(p))dp J (1(x)dx 

The idea in the proof is to show that ordinal independence implies separability in 

the sense of Gorman (1968), reinterpreted in a certain fashion. The "commodities" that 

are separable from each other are the levels of payoff at various "percentiles" of the payoff 

distribution. Thus, a representation of preference will be an additively separable function 

of the payoffs at these levels. The relative importance of consumption at different 

percentiles of the payoff distribution is reflected in the measure µ. Intuitively, we are 

allowing the percentile of the distribution at which any given payoff x occurs to have two 

effects. lt can affect the value of x, and, independently various percentiles can be more or 

less important to preferences. 

7 
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4. Representation with Differentiability 

The representation given in section 3, althought simple, becomes substantially 

simpler under the following assumption. 

Differentiability on Basic Distributions (DBD) 

The certainty equivalent, c(F A), of the distribution 
~,x 

F =(X ifx<x 
(X 

=1 ifx~x 
A 

is an everywhere differentiable fonction of (X €. [0,1], and of x. 

Under this condition, as we will now show, the measure µ on [0,1] can be shown 

to be absolutely continuous with respect to Lebesgue measure, having density m. Hence, 

we can write the representation proven in theorem 3.1 as 

where 

V(F) = J1 </J(z(p),p)dp 
0 

</>( z(p) ,P) = 1( z(p) ,P )m(p) 

Before proving this assertion, let us consider the following examples in which, 

because of the failure of (DBD), the measure µ will not have a density. 

Examplel 

For any F, let A(F) = {(z,p) €. X x [0,1] IP ~ F(z)}. Let V(F) be given 

by a measure µ(A(F)) as follows: The measure µ will be a product measure with factors 

µ2( dx) and µ( dp ), where µ2 can be an arbitrary positive measure, absolutely continuous 

with respect to Lebesgue measure, and µ has a point mass at p. 

The preference relation represented by V will fail to be continuous as one can see 

by considering a sequence of distributions F where 
(X 
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F (x) 0 
(X 

F (x) - (X 
(X 

F/x) 1 
-

X = X 

Clearly, if (X--+ p, Fk--+ F. But V(F (X) will not converge to V(F). Thus the preferences 

will not be continuous. 

Example~ 

Modify example 1 so that µ is a continuous, but not absolutely continuous, 

measure. For example, µ can be a probability measure concentrated on the Cantor 

ternary set (see Royden (1963), ch. 2, problem 42). Then V and the preferences it 

represents will be continuous. However, preferences will not be differentiable at any p in 

the Cantor ternary set, as 

dV(F) 
(X 

dµ[p, 1] 

dp 
which clearly does not exist. 

Thus, to avoid problems with differentiability, it will be necessary to avoid 

measures on X x [0,1] which are continuous but not absolutely continuous. 

Theorem 4.1 

Let t satisfy the hypotheses of section 3 and Differentiability on Basic 

Distributions. Then it can be represented by 

( 4.1) V(F) = f1 </>(z(p) ,p)dp 
0 

-
= fx h(x,F(x) )dx. 
~ 

Proof: By theorem 3.1 V (F) = f 1 <!> ( z(p) ,P) dµ(p). 
0 

Therefore it suffices to show that µ is absolutely continuous ( with respect to 

Lebesgue measure). By DBD, the derivative of V(F) at F will be 
(X 
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dµ(oc) 
</J(x,oc) doc which exists for all oc only if µ is absolutely continuons. Q.E.D. 

Throughout subsequent sections we use the representation ( 4.1 ). 

lt is useful at this point to relate the representation ( 4.1) to expected utility theory. 

If t obeys the independence axiom, and hence can be represented by a linear functional, 

J u(x)dF(x), then h takes the form 

(4.2) h(x,F(x)) - u'(x)(l-F(x)). 

Evaluating (4.1) by integrating (4.2) by parts we have 

-
X 

J_ h(x, F(x)dx u(~) + J u(x)dF(x) 
X 

Thus, we can take u(~;) = 0 by normalization. 

As we have pointed, </J takes the form: 

</J(z(p ),p) U(z(p)) 

It is also fruitful to look at the form of the funtional for particular distributions. Let us 

consider first a discrete distribution with support (x , ... ,x ) and p. = prob (x. ). Define 
1 Il 1 1 

the fonction: 

1/J(x,q,p) 

Then we have: 

1 q 
p J </J(x,s)ds, where q ~ p ~ O. 

q-p 



Il 

V(F) = E 1P(x.,F(x. ),p. )p. 
i=l 1 1 1 1 

EF îp(x,F(x),prob(x)). 

V(F) is the expectation of some utility index, where the utility of a given payoff x 

depends on its probability of occurrence and its level of cumulative. 

Consider now a distribution F with a density fonction f. Then, using a simple 

change of variable: 

V(F) - J </>(z(p),p)dp J </>(x,F(x))f(x)dx 

or 

V(F) EF </>(x,F(x)). 

Now the utility index depends solely on the level cumulative. 

Notice that 1P(x,q,O) = </>(x,F(x)), so that the interpretation given for discrete 

distributions extends to more general distributions. 

11 

Although none of the functionals ( 4.1) will be Frechet differentiable, except for 

those satisfying expected utility theory, the weaker hypothesis of Gateaux differentiability 

(see Chew, Kami and Safra (1987)) can hold and is equivalent to the existence of 

ah(x Ffx)) _ ( ( )) lJF{x) = h2 x,F x . 

A functional V is said to be Gateaux differentiable if for each F t D there exists a 

linear functional L( ·, F) such that 

(4.3) L(F' - F, F) - 1 i m ¼ (V(tF' + (l~)F) - V(F)) 
t-+O 

As Chew, Kami and Safra have shown, the hypothesis of Frechet differentiability used by 
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Machina can be weakened to Gateaux differentiability, and properties of the Gateaux 

derivative can usefully characterize global attitudes towards risk. In this sense the 

Gateaux derivative is a "local utility fonction". 

The Gateaux derivative of V at F is the function ( 4.3) evaluated for each x t X 

at the distribution F ~ which is a point mass concentrated at x. Under the hypothesis of 

Theorem 4.1, and assuming Gateaux differentiability we have that the Gateaux derivative 

UF(x) of V at F is, 

and 

X 

UF(x) - J - h2(s,F(s))ds 
~ 

-
X 

X 

J <f>t(s,F(s))ds 
~ 

L(F' -F,F) J UF(x){dF'(x) -dF(x)} 
~ 

We make extensive use of this formula in sections 7 and 8 below. 



5. Risk A version 

Throughout the remaining part of the paper, we will restrict ourselves to smooth 

preferences and assume the following: 

Smoothness Condition 

</>1 = - h2 is continuous and positive 

<1>12 = - h22 exists everywhere and is continuous. 

13 

One of the main results in Machina's (1982) original paper was that one could use 

local utility functions to compare the degree of risk aversion of two individuals, extending 

the analysis of Arrow-Pratt. It is easily seen that the proof of the relevant theorem 

(theorem 4) uses integrals along lines and requires only that the preference functional V 

be Gateaux differentiable (see for example Chew, Karni and Safra (1987)). lt follows that 

the result applies to our preference functional. 

A first application is an easy characterization of risk aversion. 

Theorem 5.1 

An individual ( </>,h) is risk averse if and only if for all x,p: 

</>11 (x,p) - -h2i(x,p) ~ O 

<l>12(x,p) -h22(x,p) ~ 0 

Proof: Take </>*(x,p) = x, the risk neutral preferences in theorem 5.2. An individual is 

risk averse if </> is concave in x and h convex in p. We can see how the </>--form and 

the h-form are dual one to another. For any cumulative F we can interpret its inverse 

cumulative zF as a cumulative (normalize ~ to O and x to 1). If a cumulative G is 

a mean-preserving spread of a cumulative F, then zF is a mean-preserving spread of 

zG. Therefore the concavity of </> in x ( which corresponds to the concavity of the utility 

function in expected utility theory) transforms into the convexity of h in p. 

The characterization of risk aversion is just a special case of a more general result on 
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comparative risk aversion. 

Definition 

A distribution F is said to differ from a distribution G by a simple 

compensated spread if V(F) = V(G) and if there exists x* such that F(x) ~ G(x) for 

x ~ x* and F(x) ~ G(x) for x ~ x*. 

We will say that an individual A is more risk averse than an individual B if 

whenever F differs from G by a simple compensated spread from the point of view of B, 

then A prefers G to F. 

Machina proves the equivalence between several definitions of increasing risk 

aversion and the fact that for ail F, the utility fonction of A at F is a concave transform 

of the utility fonction of B at F. We will interprete this result directly using the 

functions </> and h. 

Theorem 5.2 

An individual ( <f>,h) is more risk averse than an individual ( </>* ,h*) if and 

only if for ail x,p: 

~ 
~ 

* > _ </>11 (x,p) 
* </>1(x,p) 

Proof: see appendix 

and ~ 
~ 

* 
> _ </>1 2 (x,p) 

* </>1 (x,p) 

The extended Arrow-Pratt measure of absolute risk aversion is now composed of 

two points: -~ and - ~- lt reduces to the usual measure when preferences are 

linear since then <t>1(x,p) = u'(x) and the measure is (-~, 0). 

Interpretation in terms of risk premium 

The wealth premium 

Consider an individual ( <f>,h) who is giving the choice between the lotteries over 

final levels of weal th: 



X with probability Po X with probability Po 

A X()-€. with probability p/2 B xo-71" with probability p 

XO+E. with probability p/2 

-
with probability 1-po-p 

- with probability 1-p-po X X 

The level of 71" that makes the individual indifferent between the two lotteries is the 

wealth premium that the individual is willing to pay to avoid the risk c A 

15 

straightforward calculus shows that the limit 71" of the premium 71" when p goes to zero is 

given by: 

<fa(xo-K,Po). 

So 11" is the risk premium associated to the lottery ( E.,-€.,½,½) when the initial wealth is x0 

and the individual maximizes an expected utility with utility fonction <fa(x,p0). As it is 

well known, it is approximated by 

When p is small, <fa is almost linear in p around p0. Therefore everything is similar to 

the case of expected utility. 

The probability premium 

Consider an individual ( <fa,h) who is now giving the choice between the lotteries: 

A 

X with probability Po-€. 

xo+; with probability 2E. 

xo+x with probability 1-po-€. 

x0 with probability p0-q 

B 

x0+ X with probability 1-p0+q 

The level of q that makes the individual indifferent between the two lotteries is the 

probability premium that the individual is willing to accept before giving up the extra 
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gamble c. (notice that now, when q = 0, A is less risky than B). This example is dual 

to the previous one. If we reinterpret the inverse cumulative fonctions as cumulative 

fonctions, the two problems are the same except that now h replaces <p. The limit q of 

the premium q when x goes to zero is given by: 

h(xo,Po~) + h(xo,Po+c.) 
2 

So when c. is small, q can be approximated by 

q ~ 

h( xo,Po-q). 

Notice that under expected utility, q is exactly zero. When x is close to 0, the utility 

fonction is almost linear and the agent is risk neutral. With non-linear preferences, the 

marginal utility of wealth becomes almost constant in the relevant range, but there is 

another dimension to risk aversion. Preferences can be represented by Yaari 's dual 

preferences. 
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6. The Allais Paradox and the Common Ratio Effect 

The Allais paradox and other related observations have been extensively examined 

in the existing literature. We refer the reader to Kahneman-Tversky (1979) and 

MacCrimmon-Larsson (1979) for detailed exposition and discussion. We will restrict most 

of our discussion to the case of three outcomes distributions (x1, x2, x3, p1, p2, p3) with 

x1 < x2 < x3. There is a very convenient graphical representation of such a distribution 

introduced by Machina: for given outcomes x1 < x2 < x3, we can represent a 

distribution in the plane by using p1 and p3, the probabilities of the low and the large 

outcomes. Diagram (6.1) illustrates the common ratio effect . 

• p 
l 

The sure outcome C is preferred to the lottery D. A and B are obtained from C and 

D by mixing the bad outcome with probability q. In many observations B is preferred 

to A, contradicting the prediction of expected utility theory. Notice that under expected 

utility the isopreference curves are parallel straight lines. Similarly, diagram (6.2) 

illustrates the Allais paradox. 
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Now A and B are obtained from C and D by transferring a probability q 

from the medium outcome x2 to the low outcome x1. As before, an expected utility 

maximizer who prefers C to D must prefer A to B. 

Machina (1982) proposes to generalize both paradoxes under the following 

behavioral assumption: 

Generalized Common Ratio Effect ( GCRE): Let FA, F B, F C, F D E D be such 

that F C and F D respectively stochastically dominate FA and F B' and 

F D - F C = .X(F B - FA) for some ,,\ > O. Then, if F B differs from FA by a simple 

compensated spread, V(F D) ~ V(F c). Similarily, if F D differs from F C by a simple 

compensated spread, then V(F B) ~ V(F A). 

When the distributions have a support composed only of three outcomes 

x1 < x2 < x3, the GCRE has the following interpretation. 
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A distribution stochastically dorninates another distribution if it lies above and on 

the left. If we choose A, B, C as shown and A"' B, then C must be preferred to any 

distribution on the segment [E,F]. By choosing B close to A, we see that it implies that 

the slope of the isopreference curve at C be greater than the slope of the isopreference 

curve at A. The slope of the isopreference curve at some point (p1 ,p3) is given by 

The GCRE implies that this ratio be non-increasing with p1 and non-decreasing with 

Theorem 6.1 

An individual ( ef>,h) verifies the GCRE if and only if she is an expected 

utility maximizer. 

Proof: Choose any x < x < x < x then ~fx2 ,P1)-</>~x 1 ,pi) -- 1 2 3 4' X3, 1-p)- (x2, 1-p) 

is non-decreasing with p and ~f x3 ,p)-<Pf x 2 {p) 
X4, 1-p3 -(/) X3, l-p3) 

non-increasing with p. This is only possible if </>(x3,p) - </>(x2,p) is independent of p, or 

</>1 (x,p) = u'(x). QED 
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The theorem generalizes the same result obtained by Segal (1984) for anticipated 

utility, it shows that this is not linked to the multiplicative separability. Segal then 

proposed a weaker behavioral assumption inspired by the Allais paradox: 

Generalized Allais Paradox (GAP): Let FA' F8 , Fe, FD be such that Fe and 

F D respectively stochastically dominate FA and F 8 , and F D - F C = F 8 - FA. Let 

V(F A) = V(F 8 ) and x* be such that for x ~ x*, FA (x) ~ F 8 (x) and for x ~ x*, 

FA (x) ~ F 8 (x). If for x ~ x*, F c(x) = FA (x), then V(F c) ~ V(F 0 ). 

In this version C and D are obtained by shifting in the same amount probabilities 

from low to medium outcomes, as in the Allais paradox. In the case of three outcomes, it 

means that A and C are on the same horizontal line, and so are B and D. 

Theorem 6.2 

The preferences ( </>,h) verify the GAP if and only if for all x,p: 

<P12(x,p) = -h22(x,p) ~ O. 

Proof: See appendix. 

The result is interesting because it shows that the type of behavior characterizing 

the Allais paradox is not only compatible with but is implied by risk aversion. 4 It suggests 

that the best candidates to explain some risk-loving behavior while staying consistent with 

experimental observations are preferences with h convex in p but </> not concave in x. 

Remark: The GAP doesn't imply the "common ratio effect". The reason is that if 

<1>12 ~ 0, the isopreference curves are concave so that the GAP doesn't prevent the 

situation depicted on diagram (6.4). 

4In the case of a multiplicatively separable form <t>1 (x,p) = u'(x)f'(l-p) the condition 

reduces to f convex as found by Segal (1984). 
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However it is clear that they are not contradictory. 
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7. The Friedman-Savage Hypothesis and the Boundedness of Preferences 

In their seminal article Friedman-Savage (1948), pointed out that many individuals 

were simultaneously purchasing lottery tickets and insurance. They proposed a 

von Neumann-Morgenstein utility fonction concave for low outcomes (and hence risk 

averse) and convex for large outcomes (risk loving). There were several difficulties with 

this utility representation. First the utility fonction was unbounded, therefore inducing 

unbounded preferences and subject to the "St. Petersburg Paradox". In addition the 

willingness to pay for } chance of winning $kt was increasing with k. This led them to 

add a terminal concave part at very large outcomes. Finally, it could not explain why 

people purchase lottery tickets and insurance regardless of their initial wealth. These 

points are discussed with great details by Machina (1982). As was pointed by Machina, 

when the preference fonctional is non-linear in the distributions, preferences may be 

bounded even though the local utility fonctions are unbounded. This could explain at the 

same time the observed gambling behaviors and their relative invariance to the initial 

wealth since the inflexion point of the local utility fonction would depend on the initial 

wealth. Machina's analysis relies on Frechet differentiability and therefore cannot be 

applied directly to our preference relation. The reason is that when V is Frechet 

differentiable, the derivative of V at some point characterizes the local behavior of V in 

a precise sense, however, this is not true if V is Gateaux differentiable. In the latter case, 

we cannot uniformly approximate V by its derivative in some neighborhood. 

Let us first mention that the boundedness of preferences guarantees that the agent 

will not purchase a lottery ticket with too high a prize. 

Theorem 7.1 

Suppose that V is bounded, then for all w > 0 and E. > 0, the sure 

outcome w is preferred to the lottery ( w - E., w + 1 ;p E., 1-p, p) for p small enough. 

Proof: see appendix. 

The theorem tells us that a decision maker will not purchase a fair gamble offering 
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k1: with probability 1/k if k is too large. 

We now turn to the problem of the unbounded utility fonctions. lt appears quickly 

that the non-separability of the fonction </> and h is crucial. 

Theorem 7.2 

If </> is separable, i.e. </>(x,p) = u(x)g(p), and V(·) is bounded, then the 

local utility fonction at any distribution F is bounded. 

Proof: Let Gw be the cumulative distribution of a point mass at W, 

V(Gw) = u(w) J1 g(p)dp, so u(·) is bounded. 
0 

UF(x) = txu'(s)g(F(s))ds < sBpg sipu QED 

When </> is not separable, we can easily construct preferences that are bounded 

with unbounded utility fonctions, using the following lemma. 

Lemma 7.1 

If the fonction p { ]0,1[ -+ sup </>(x,p) is 11, then V(·) is bounded. 
X 

Proof: V(F) = 11 
</>(z(p) ,p)dp < 11 sip {</>(x,p)}dp 

0 0 

So to exhibit some bounded preference fonctional V with an unbounded local 

utility fonction UF at all distribution F, we choose </> verifying the condition of lemma 

(7.1) and such that </>(x,1) is unbounded. If we choose </>(x,O) to be concave and </>(x,1) 

to be convex, the utility fonctions will have the desired concave-convex shape (see figure 

(7.1) and (7.2)). 

Note that at the same time we solve the problem of the relative invariance of 

gambling behavior to initial wealth, since the inflexion point ( or region) of the utility 

fonction will change with the initial distribution. An appealing property is that for a 

non-random wealth w, the inflexion point is exactly at w. 
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---------

u 

------ . - . ----- : _. . --- : - . 
/' : 

~ (x,1)-~ (v,l)+ ~(v,O) 

L ______ -----:::-_:...._ _______ __..x 
V 

F~ure (7. 2). 
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As we pointed above, the derivative of V at F doesn't characterize completely the 

local behavior of V. When talking about lottery or insurance, we do not consider 

unidirectional pertubations of the initial wealth, so that a decision maker may not want to 

purchase a lottery ticket or an insurance contract even though the local utility fonction has 

the right shape. The strategy we adopted is to characterize the conditions under which she 

would purchase a lottery involving a fixed gain or an insurance against a fixed loss if the 

probability of the event considered is small enough, in the spirit of the local analysis. 

Lemma .(.Ul 

An individual with initial distribution F will accept the lottery 

( E., - l~p E., p, 1-p) when p is small if 

(7.a) 

and only if the weak inequality holds. 

Proof: see appendix. 

For the case of insurance, the initial distribution must include the loss but the result 

is similar. 

Lemma.(Lfil 

An individual with an initial distribution G(x) = pF(x + E.) + (1-p)F(x), 

i.e. wealth w with distribution F(w) plus an additional p chance of loosing E. 

independently of w, will insure against the loss E. when p is small enough if 

(7.b) 

and only if the weak inequality holds. 

The conditions when V is Frechet differentiable are the same except that 
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1 l <t>1(z(p),p)dp is to be replaced by EF U-j., (x). If we assume that <t>12(x,p) ~ 0, then 

J1 
<!>1 (z(p),p)dp ~ J1 <1>1 (x,F(x)) dF(x) = EF U-j., (x), so that the conditions (7.a) and 

0 0 

(7.b) are stronger. However when the distribution F has no point-mass, 

J 1 
<!>1 ( z(p) ,P )dp = J 1 

<1>1 ( x,F( x)) dF( x). Therefore it is natural to impose as a first 
0 0 

requirement that the local utility fonction at a smooth distribution have a concave-convex 

shape. If we want preferences to be bounded, this rules out separable forms 

</>(x,p) = u(x) g(p ). 

There is a more fondamental reason to exclude separable forms. As was done by 

Friedman and Savage, a separable form could be reconciled with bounded preferences by 

adding a terminal concave section to the utility fonctions. But a separable form cannot 

explain the invariance of gambling behavior to initial wealth. The local utility fonction for 

a fixed initial wealth w when </>(x,p) = u(x)g(p) is given by: 

UG (x) = u(x)g(O) 
w 

= u(x) g(1) - u(w) {g(1) - g(O)} 

if X~ W 

if X~ W 

We see that the shape of the utility fonction at some level x is independent of w. It is 

impossible that the utility be concave-convex with an inflexion point close to w for all 

Gw, since the inflexion point must be independent of w. 

Remark: If <t>12(w,p) ~ 0 and </>(x,O) is concave, when the initial distribution is 

Gw, (7.b) is verifies for all E. ~ w, while (7.a) is not verified for E. small. This is 

consistent with the existence of lotteries with substantial prizes only. 

Using lemmas (7.1) and (7.2), we see that to build an example of bounded 

preferences compatible with the simultaneous purchase of lottery tickets and insurance, one 
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can do the construction illustrated on figures (7.1) and (7.2) and choose <f>(x,1) such that 

lim 
X-HOO 

<t>1(x,1) = +oo. Thentheindividualwillpurchasealottery(t,p) when E. is 

large and p is small enough. This doesn't contradict the theorem (7.1) because the 

probability p has to be chosen after c In theorem (7.1) we fix the premium and increase 

the prize, while now we fix the prize and decrease the premium. The next section will give 

specific examples. 
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8. Integrated Solutions. 

We want now to determine whether the theory enables us to reconcile the behaviors 

discussed in section 6 and 7 with the same preference functional. More precisely, can we 

find </J and h such that preferences are bounded, the GAP is verified and, at least for all 

Gw, the relations (7.a) and (7.b) are verified for some E. > O? lt turns out that if we do 

not restrict the levels of wealth considered, the search is hopeless. We show below that the 

GAP and the purchase of some lottery tickets at all level of wealth (as we defined it) are 

incompatible with bounded preferences. 

Theorem 8.1 

Suppose that for all x,p, <fJ12(x,p) < 0 and that for all distributions Gw 

there exists E. > 0 such that (7.a) is verified, then preferences are unbounded. 

Proof: see appendix. 

The intuition behind the results is that if <fJ12(x,p) < 0, the slope of </J( .,p) 

decreases with p so that when ef>(.,1) is unbounded, so will be ef>(.,p). But if ef>(.,p) is 

unbounded for all p, preferences must be unbounded. 

The result is not so disturbing because wishing to reconcile everything at all levels 

of wealth appears a little excessive. After all we are talking about the initial wealth of the 

individual, and initial wealth is bounded. We will show in the following examples that we 

can still go very far in the search of an integrated solution. The problem cornes from the 

behavior when the initial wealth is very large. If we assume that either the GAP or 

relation (7.a) is verified only for bounded levels of initial wealth, the other requirements 

can be verified for all level of wealth. 

Examples 

ExampleQ 

Suppose that </J(x,p) = x + (1-2yp) i:x 



(1-2/J)) 
Then </Ji (x,p) = 1 + (1+x)2 > 0, 

</J12 ( X , p) = 
1 --- < o. 

/J)(l +x) 2 

</J(., p) is concave for p < ¼, convex for p > ¼ 

~(x,O) 

t (x,1) 

.... ······~ 

1 1 1 
For F = Gw, b <fat(w,p)dp = 1 - 3' (l+w)2, while 

UG (w+t) - UG (w) [ ,_, '-'+" ] 
w w = 1 +1 " "'-

( ( 1 +W - 1 +WH ' 

UG (w-€.) - UG (w) 
_w _____ w __ _ 1 + 1 [ w _ w-t ] 

t - t i+w 1+w-€. · 

• X 

Therefore (7.a) is verified for t > ( 1 + w)2, while (7.b) is verified for all t < w. One 

appealing aspect is that the purchase of insurance appears to be more general than the 

purchase of lottery tickets. However preferences are unbounded: 

29 
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V(Gw) = l1 {w + (1-2,/p) 1~w} dp = w-§" I~w w-+ + oo + oo. 

Example l 

Choose k large enough: 

</>(x,p) = x + (1 -2 ,/p) I~x 

= </>(k,p) + </>1(k,p) l~;~k 

.. ············ 

.:.-··· 
.·· .· . . · . . · . . · . . · . . · . . · . .· . . · . . · . . · . .. ·· : .· . . · . .. ··· . 

Now the preferences are bounded since 

--- ~(x,O) 

~(x,1) 

X 

k 1 </>(x,p) < </>(k,p) + <t>1(k,p) < k+fil+1 + (l+k)2· 

<t>
1 

is defined everywhere and continuous: 

if X ~ k, 

if X ) k. 

</>1 (x, p) = 1 + 1- 2~ if X~ k 
~ 

</>1 (x,p) = </>1(k,p) (f +~-k)2 if X~ k. 



</>12(x,p) isdefinedeverywhereand </>12(x,p) < 0: 

</>12 (x, p) = 

= 

1 

/J>(1 +x)2 
1 

/J>(1+k)2(1+x-k)2 
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if X ~ k, 

if X 2 k. 

So the GAP is verified. Provided that w < ½(k-2), an individual with initial 

wealth w will purchase some lottery tickets and insure all small risk ((7.a) is verified for 

some E and (7.b) for all E < w). 

Example 2. 

Define x (p) = k , k large . 
.jp(l-p) 

</>(x,p) = x + (1 - 2/i>) i~x if x~x(p), 

= </>(x(p) ,p) + </>1 (x(p) ,p) 1~;~~1~) if X 2 x(p) . 

t(x,p),p<l/4 

2k X 

Figure (8.3) 
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As in example 1, <t>1 is defined, continuons and positive everywhere. As long as 

x < x(p), <t>12(x,p) is defined and negative so that the GAP is verified at least for 

distributions with upper bound less than 2k. 

For a fixed wealth w, the utility is: 

if X~ W 

if X~ W. 

The utility fonction at Gw is the same as in example O ( only </>( .,0) and </>( .,1) 

matter). Notice that5 <t>1 (x,p) ~ 1 + (l:2. Therefore the results of example O hold and 

an individual with initial wealth w will purchase some lottery tickets and insure all small 

risks. 

5For all ex E. [-1,1], x > k, 1 + (1:x)2 > [1+ (1:k)2 ] (l+!-k)2 · 
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Appendix 

Proof of Theorem 3.1 

We begin by considering the set of all distributions with equally unlikely outcomes, 

DE, and, for each n, the subset o! c DE with n outcomes each of which has a 

probability that is a multiple of 1/n. 

For FE. DE, let us list the mass-points of F in non-decreasing order as xF1 , ... ,xF. 
Il Il 

By the axioms of ordering and continuity on n!, we can represent preferences by a 

numerical indicator v!(F) = Un (x1, ... ,xn). The domain of Un is the n-fold Cartesian 

product of X, subject to the constraints that x1 s ... s xn. Let us denote this space xn. 

The subsets of components {i 1 1 s i s j} and {i I j s i s n} are separable in Gorman's 

sense, by virtue of the ordinal independence assumption. 

Lemma 

If t satisfies ordering, continuity and ordinal independence on n!, then there 

exist uf, i = l, ... ,n, such that 

(3.1) 
Il 

E 
i=l 

u~ (xf) 
1 1 

is a numerical representation of t. Moreover uf is continuous and non-decreasing. 

Proof of lemma: int xn can be written as the union of open rectangles {Sk}k=l,... where 

k-1 
and where, for any k, Sk n ( u S . ) # <p. 

j=l J 

Apply Gorman's theorem to S1, obtaining a representation 

Il 

U ( x1, ... x ) = E u. (x.) , 
Il Il i=l 1 1 
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where ui are continuous and non-decreasing, by virtue of the continuity and monotonicity 

axioms. 

Now apply Gorman's theorem to S2 obtaining 

The fonctions ui are unique up to common affine transformations. Therefore there will be 

a unique set of fonctions ui which agree with the ui on their common domain s1 n s2. 

With only a slight abuse of notation we can use ui to denote these fonctions throughout 

the domain s1 U s2. Continuing this procedure, and extending continuously to the 

boundary of xn, we obtain (3.1). Q.E.D. 

Define 

by 

(3.2) 

we have 

n { 1 2 } ?/J = x x o, n' iï, ... ,1 --. IR 

s· n( F i ) n( F i-1) mce ?/J xi, iï - ?/J xi, n 

n n F 
= ~ u.(x.) 

. 1 1 1 l= 

u1 (x}) for i = l, ... ,n 



and that it also represents ton n!. 
Note that if m = jn for some integer j, then 

Therefore, applying the above definition for all n, we obtain a function 

î/J: X X Q-ilR 

where Q is the set of all rational numbers in [0,1 J. 

-
Define '1/J(x,q) = '1/J(x,q) - î/J(x,q). 

Lemma 

If F €. DE has mass points with rational probabilities, then 

n - F - F 
V(F) = i ~ 

1 
î/J (xi, qi) - î/J (xi, qi_1) represents t, where qi is the cumulative at 

Proof of lemma: Let F €. DE have mass points at x{ , .. x:, in increasing order, 

n - F - F 
(3.3) E î/J(x. ,q.)-î/J(x.,q._1) . 1 1 1 1 1 1= 

n F F n - -
= E î/J(x. ,q.) - î/J(x. ,q. 1) - E ( î/J(x,q.) - î/J(x,q. 1)) i=l 1 1 1 1- i=l 1 1-

F x .. 
1 
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However the last summation is invariant to (ql' ... ,qn) and hence to F, because it 

represents the utility of a unit point mass at x. Thus the left-hand side of (3.3) is also a 

representation of t. 

Lemma 

î/J is continuous. 
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Proof of lemma 

-Let F be the distribution: x1 with probability q and x with probability 1-q 

(denoted (x1,x,q,l-q)) where q is rational. We have ,t,) 

- - - -
V(F) = 1P(x1,q) -1/J(x,O) + 'ljJ(x,1) - 'ljJ(x,q) 

which equals 

V(F) 'ljJ(x1,q) - 'ljJ(x,q) 

or 'ljJ(x1,q). 

'ljJ(x1 ,q) is continuous in x1 from the continuity of the u! 's. 

Suppose now that a sequence of rational numbers qk converges to q and that 
-

'ljJ(x1 ,qk) does not converge to 'ljJ(x1 ,q), say it converges to 'ljJ(x1 ,q) - oc, where oc > O. 

There exists some E. > 0 such that 

- -
'ljJ(x1,q) -; < 1/J(xl~,q) < .1/J(xl,q) 

For k large enough, the distribution (x1~,x,q,1-q) is strictly preferred to the 

distribution (x1 ,x,qk,1-qk), which contradicts the continuity assumption. Q.E.D. 

Since V(F) is continuous on the distributions with rational probabilities, it has a 

continuous extension V(F) on D. 

Since 'ljJ is continuous, it has a unique continuous extension to 

Il 

X x [0,1], denoted ""ip. Moreover, V(F) = E ~(x. ,P·) - 'ljJ(x
1
. ,p

1
._1)] where F is 

. 1 1 1 l= 

the distribution with support {xl'" .. ,xn} and cumulative pi at x1 

The fonction ""ip induces a continuous measure on the Borel sets of 



X x [0,1] as follows: Consider the fonction µ induced on 

rectangles [x1 ,½] x [p1 ,p2] by 

and let µ, be its Lebesgue extension to ail Borel sets in X x [0,1]. 

Now as "ip is continuous, µ, will be continuous, in the sense that it has no 

point-mass. 
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By construction of the Lebesgue extension, the measure is set--continuous: That is, 

if An --+ A then µ(An) --+ µ(A) where An --+ A means 

lim sup An = lim inf An = A. 

Let us define now AF = {(x,p) IP ~ F(x)}. lt is easy to construct, for each 

distribution F, a sequence of simple distributions such that An--+ AF (An and A are 

the upper set), and An Ç An-l and AF Ç An. For a simple distribution: 

n n 
µ,(An) = i E 1 [o/J(xi'pi) - "ip(xi, pi-1)] - i E 1 [o/J(O,pi) - "ip(O,pi-1)] 

- -
V(F n) - ?f'(0,1) 

so for any F, µ,(AF) V{F) - ?fi( 0,1) 

We can take µ,(AF) as representation of the preference. 

Now decompose µ,(dp,dx) as a marginal measure µ(dp) and a conditional 

distribution µ2(p,dx). 
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µ(A) = J µ(dp) f µip,dx) 

where the integral is taken over (p,x) t AF 

Write 

define 

Then 

{xi (p,x) €. Ap} = [0,z(p)] 

°?>(z(p),p) = Jz(p) µ
2

(p,dx) 
0 

µ(Ap) = f °?>(z(p),p) µ(dp). 

The corollary is obtained by decomposing the measure into the marginal measure v( dx) 

and the conditional measure v2(p,dx). 

Proof of Theorem 5.2: ( </>,h) is more risk averse than ( </>* ,h*) if and only if the fonction 
* . 

x-+ lx 4>1 (s,F(s))ds is a concave transform of the fonction x-+ lx <1>1 (s,F(s))ds, for all 
0 0 

F. 

(1) 

From Pratt's characterization of concave transforms, this is equivalent to: 

'v'F, Vx1, x2, x3, x1 < x2 < x3 

X2 X3 
fx1 </>1(s,F(s))ds > fx2 </>1(s,F(s))ds 

fx2 </>1 (s,F(s))ds Jx3 </>1 (s,F(s))ds 
X1 x2 

Taking the limit when x2 -+ x1 and the limit when x2 -+ xa we find when F is 

continuous: 

</>1(x1,F(x1)) 
* > 

</>1 (x1,F(x1)) 

X3 

f x
1 

</> 1 ( s, F ( s)) ds 

X3 * 
fx1 </>1(s,F(s))ds 

> <P,i ( X3 , F ( X3) 

</>1 (xa, F (xa)) 



so that <P,i(x,F(x)) is non-increasing which is equivalent to our statement. 
</>1 (x,F(x)) 

Suppose now that <P,i ( x' F ( x) ) is non-increasing then 
</>1 (x,F(x) 

X2 

fx1 </>1(s,F(s))ds 

J~: </>1 (s,F(s))ds 

Proof of Theorem 6.2: 

Necessity: 

implies <t>12(x,p) ~ O. 

Sufficiency: 

> 

X3 
> J x

2 
</>1(s,F(s) )ds 

J ~! </>1 ( s, F ( s)) ds 

QED 

must be non-increasing with Pt, which 

. 1 1 
V(FA) = V(F8) {:::} J f <t>1 (x,p)dp dx = J f <1>1 (x,p) dp dx 

X t8(x) X FA (x) 

39 
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As for x ~ x*, F 0 (x) ~ FA (x) and F B(x) - FA (x) ~ 0, this is true if </)1 (x,p) is 

non-increasing with p or <fJ1ix,p) ~ O. Q.E.D. 

Proof of Theorem 7 .1: 

( .!=P. ) We call Fp the distribution w - t, w + P t, 1-p, p . 

V(G ) = 11 </J(w,s) ds 
w 0 

V(F ) = ll-p </J(w~,s) ds + 11 </J(w + l-p·t, s) ds 
p O 1-p p 

lim sup V(FP) = 11 <,b(w~,s)ds + lim sup 11 <,b(w + 1;P t,s) ds 
p-+0 0 p-+0 1-p 

Suppose that p + 0 and V ( Gw) < V (FP ) Il Il-t 00 
Il 

Then there exists a > 0, such that for all n: 

(1) 
1-p 

11 
</J ( w + n t , s) ds > 2a 

1-pn Pn 

Now choose the sequence qt by: q1 = pl' qt+l = pn such that 
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i-qt+1 i-q_t J <f>(w + -- E., s) ds > a. Given that qt = p for some n, the inequality (1) qt Il 
1-qt 

insures that we can find qt+ 1. Choose a distribution F as follows: 

1-q_t 
z(p) = w + -- E. if p E.] 1-qt, 1-qt+i [. Then qt 

V(F) > 
1-q_t 

</>(w + - E., s) ds = + oo. 
qt 

So the preferences are unbounded. Q.E.D. 

Proof of Lemma !.L.2).: 

p 
= (1-p) F(x + i-p E.) + p F(x-{_). 

F(x)' 
V(FP) - V(F) = J f </>1 (x,s) ds 

X P(x) 

F(x) F(x) 
= f { f </>1 ( x, s) ds + J P </>1 ( x, s) ds 

X (1-p)F(x)+p F(x-{_) ( ) 
F X+ 1-p E. 

(1-p)F(x)+p F(x-E.) 

+ J </>1 (x,s) ds + 
F(x) 

p 
F(x+ i-p E.) 

J p </>1(x,s) ds} dx 
(1-p)F(x+ i-p E.) + p F(x-E.) 
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a) The second line has derivative O at p = O. 

V rx. > 0, 3/J > 0 / 1 s - F(x) 1 < p ==} 1 </>1(x,s) - <h(x,F(x)) 1 < rx.. 

(1-p)F(x)+ pF(x-t) 
Define G (p) = J { J </>1 ( x, s) ds + 

X F(x) 

p 
F(x+ -1 - t) 
J -pp </>1(x,s)ds}dx 

(1-p)F(x+ l-p t)+p F(x-t) 

.Je </>1(x,F(x) )(F(x+ /-:pt) -F(x)) dx + 2rx. .Je (F(x) -F(x~)) dx 

~ ~ ~ .Je </>1(x,F(x)) (F(x+ /-:pt) - F(x)) dx - 2rx. .Je (F(x) - F(x~) )dx 

using the right continuity of F, we find 

V rx. 2 rx. J (F(x) - F(x~)) dx ~ lim IQ..(tll or 
X ~O P 

b) The first term of the first line is V((l-p)F + pF t) - V(F) where F t is the 

distribution F /x) = F(x~). By definition of UF its derivative is: 

J UF(x) { dF(x~) - dF} = EF {UF(x+t) - UF(x)} 
X 

The second term can be written: 

F(x) 
J f <t>1(x,s)dsdx= J{</>(z(s)--r--t, s)- </>(z(s),s)}ds 
X F(x)+l~p t s P 

lts derivative at p = 0 is - t ! </>1 (z(s),s) ds. 

So the overall derivative is 



EF {UF (x + E) - UF(x)} - E J </>t(z(s),s) ds. 
s 

Lemma ( 7. 2) follows directly. 

Proof of Lemma .(L.fil.: 

Define F P(x) = F(x + p E) the distribution of the agent if he insures the risk. · 

p F(x+E)+(1-p)F(x) 
V(F ) -V(G) = J ( </>t(x,s) ds 

P X F(x+pE) . 

p F(x+E)+(1-p)F(x) 
- f ( 

X F(x) 

F(x) 
</>t(x,s) ds + J ( <h(x,s) ds 

X F(x+pE) 
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The first term is just V(F) - V((l-p)F + p F ) where F (x) = F(x+E), its derivative is E E 

The second term is J { - <P(z(s),s) + <P(z(s) - pE,s)} ds, 
s 

its derivative is - t J <Pi(z(s),s)ds. So the total derivative is: 
s 
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Proof of Theorem 8.1: 

For F = Gw the relation (7.a) reduces to : 

(i) p(w+{,1)-p(w,1) > / </>1(w,p) dp 
{ 

0 

1 
Since </>12(w,p) < 0, J </>1(w,p) dp > </>1(w,l). Choose w arbitrarily, relation (1) implies 

0 

that we can find {1 > 0, such that: 

1 
<,f>(w+{1, 1) - </>(w,1) ~ {1 J </>1(w,p)dp > {1</>1(w,l) 

0 

</>1(w+{1,l) ~ </>1(w,l) 

Recursively, define {n by: 

1 
(2) '<1>(w+{1 .... + {n,1) - </>(w+{1 ... + {n_1,1) ~ {n J </>/w+ .... +{n_1)dp 

. 0 

Suppose that <,f>(x,1) is bounded, then w + {1 ... + {n must converge to some w. 

1 1 
But then J </>1(w+ {1 ... + {n-l ,p) dp n--++ob J </>1(w,p) dp 

0 0 



while 
</>( w+ ••• E.n, 1 )-</>( w+E.1 ••• +E.n-l '1) 

E.n 

1 

Il-H()b </>1 (w' 1) 

So we find </>1(w,1) ~ J </>1(w,p) dp which contradicts </>12(x,p) < O. Therefore </>(x,1) 
0 

is unbounded. Since </>(x,p) = Jx </>1(s,p)ds > Jx </>1(s,1) ds 
0 

unbounded for all p. 
0 

Q.E.D. 

</>( x, 1), </>( x,p) is 
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