
NONLINEAR DIFFERENCE EQUATIONS 

BIFURCATIONS AND CHAOS 
* 

AN INTRODUCTION 

** 
by Jean-Michel Grandmont 

Juin 1988 

N° 8811 

CBPREMAP 
142 ISIBLIOl'Heoue 

, rue du Ch 
7501. 3 evaleret 

T PARIS 
él. : 40 77 84 20 

* This work is supported by a grant of the National Science Foundation at the 
Institute for Mathematical Studies in the Social Sciences, Stanford 
University, Stanford, California. Financial support from the Suntory Toyota 
International Centre for Economies and Related Disciplines, London School of 
Economies, London, is also gratefully acknowledged. 

I greatly benefited from the kind advice and outstanding expertise of 
Alain CHENCINER, in particular from a two days course he gave on the Hopf 
bifurcation at the Groupement de Recherche en Economie Quantitative et 
Econométrie, Ecole des Hautes Etudes en Sciences Sociales, in Marseille in 
the fall of 1986. I wish to thank him very much here. 

** CNRS and CEPREMAP, 142, rue du Chevaleret, 75013 PARIS, France. 



NONLINEAR DIFFERENCE EQUATIONS 

BIFURCATIONS AND CHAOS : AH INTRODUCTION 

ABSTRACT 

The aim of these lecture notes is to present a few mathematical facts 
about the bifurçations of nonlinear difference equations, in a compact form 
that might be useable by economic theorists. These notes should be part of the 
mathematical appendices of a forthcoming book "Market Psychology and Business 
Cycles" that will be eventually published by Oxford University Press. 

The material of these lectures was presented as a short course at the 
Summer Workshop in Economie Theory at Stanford University ( IMSSS) in the 
summer of 1987. The comments and suggestions of the participants are 
gratefully acknowledged. 
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A. PRELIHINARIES 

We state first a few more or less elementary facts about matrices and 

differentiable maps, that are used repeatedly in the sequel. 

m 
We recall that R is the set of all m-tuples of real numbers. A "point" 

m 
or a "vector" of R is x = Cx , ••• ,x) ; the number x is the i-th 

1 m i 

coordinate of the vector. Vectors x , y are added coordinatewise 

X + y = Cx , .•• ,x) + (y , ... ,y)= 
1 m 1 m 

Cx 
1 

+y, .•• ,x + 
1 m 

y ) 
m 

m 
If ais a real number, the product axis the vector Cax , ... ,ax) . R is then 

1 m 

an m-dimensional real vector space. Its standard basis fs the collection of 

vectors e , .•. ,e , in which for each = 1, ••• ,m, e is the vector of 
1 m i 

coordinates e = 6 , j = 1 , ••• , m where 6 is the Kronecker function, 
ij ij ij 

that is 6 = 0 if i f. j and 1 if i = j . Any vector X : {x , ••• IX ) has then 
ij 1 m 

a 

unique representation as a linear combination of the vectors e of the standard 
; 

basis, that is x = r x e . A nru:m is a real valued function 11.11 defined on 
; i i 

m 
R , with l lxl 1 > 0 , such that I laxl 1 = lai llxll, l lx+yll < llxl l+IIYI 1 , and 

and I lxl 1 = 0 if and only if x = 0 . The Eucljdean norm will be denoted 

2 1/2 
{[ X) 

; i 
lxl = 

A.1. Matrix algebra 
~~ "-' 

2 
A square matrix of dimension m , i.e. a collection of m real 

numbers A= Ca l , where i = 1 , ••• ,m stands for the index of the i-th row of 
ij 

the matrix, and j = 1, .•• ,m stands for its j-th column, defines a linear 
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m 
transformation (or map) T from R into itself, that associates to every 

vector x = (x , ... ,x ) a new vector x' = Tx of coordinates x' = [ a x , for 
1 m i j ij j 

i = 1 , ••. ,m , or in matrix notation, x' = Ax • Then if e , ••• ,e is the 
1 m 

m 
standard basis of R , the vector represented by the j-th column of A , i.e. 

j 
a = (a , .•. ,a ) , 

1j mj 
is the image of e by T (or A), that is aj = Te = Ae 

j j j 

The image x' = Ax of any vector x = (x , .•. ,x) is the linear combination of 
1 m 

j 
the vectors a , with weights x 

j 

X = A([ x e ) = [ 
j j j j 

j 
X a 

j 

m 
Conversely, any linear transformation T from R into itself can be (uniquely) 

represented by the matrix A= [a l , in the standard basis, where the j-th 
ij 

j 
column. a = (a , ... ,a ) of the matrix Ais the image by T·of the vector e 

1 j mj j 

It follows from these remarks that a matrix Ais invertible if and only if the 

m m 
corresponding linear transformation Tin onto (i.e. the image of R by T is R 

j 
itself), or equivalently, if and only if the m vectors a are linearlv 

independent (i.e. [ 
j 

ex a 
j 

j 
= 0 implies ex = 0 for all j). 

j 

m 
A given linear transformation T of R into itself has different 

m 
equivalent matrix representations, according to which basis of R is chosen. 

m 
Consider a new basis of R , i.e. a collection of m vectors - -e , ... , e , 

1 m 

that are linearly independent. Let (p , ... ,p ) be the coordinates of e in 
1j mj j 

the standard basis, and P stand for the matrix of which the j-th column is e 

i.e. P = Cp l . We know from the previous paragraph that P has an inverse P 
ij 

m 
A vector of R of which the coordinates in the old (standard) basis are 

X= (x , ,.,,X 
1 m 

has coordinates y= (y , ... ,y) in the new basis. That is, 
1 m 

~, 



J 

this vector can be (uniquely) expressed as a linear combination of the vectors 

ë of the new basis, with weights y , i.e. r y ë . The relationship between 
j j j j j 

new and old coordinates is obtained from the vector equalities 

r x e = r y. e = r y <r p e > 
; i ; j J j j j ; ij i 

which imply x 
i 

-1 

= rJ. P •. y. for all i , or in matrix notation, x = Py , 
lJ J 

y = p X • 

A given linear transformation T is represented, in matrix notation, by 

the map x ~ x' = Ax in the standard basis, and by y~ y' = Bx in the new basis. 

Analytically, the matrix Bis obtained from A by making the change of variables 

-1 
x = Py, which yields B = P AP . Here again, the j-th column of B represents 

the coordinates, in the new basis, of the image of e by T. 
j 

m 
A linear transformation T of R into itself may thus be given a 

convenient matrix representation, by choosing an appropriate basis. The 

remainder of this section is devoted to such a matrix representation, the 

real canonical (or Jordan) form of T . 

We look first at the circumstances ensuring that T has a block diagonal 

matrix representation. Let E , •.. ,E be a collection of (linear) subspaces of 
1 r 

m m 
R , i.e. each E is a subset of R that is closed under the operations of 

h 

addition and scalar multiplication : if x , y are vectors of E and a a real 
h 

m 
number, then x + y and ax belong also to E . Assume that any vector x of R 

h 

has a unique representation of the form x = x + •.• + x 
1 r 

in which x is in E 
h h 

m 
for each h . We say then that R is the direct sum of the linear subspaces. 

Assume further that each subspace E is invariant by T , i.e. if x belongs to 
h 

E , then Tx is also in E . Choose now a basis for each E , and take the 
h h h 
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m 
union of the basis elements of the E to obtain a basis for R . In that basis, 

h 

T has the block diagonal form 

B = diag <B , ... ,B > = 
1 r 

B 
1 

B 
r 

This means that the matrices B are put together corner-te-corner diagonally as 
h 

indicated, all other entries in B being zero (we adopt the convention that the 

blank·entries in a matrix are zeros). Each matrix B represents in fact the 
h 

restriction T of T to the invariant subspace E 
h h 

m 
Conversely, assume that R has a basis in which T has a matrix 

representation of the above block diagonal form. Let E be the linear subspace 
h 

spanned by the vectors of the basis, the images of which are the columns of the 

m 
matrix B associated to the submatrix B ·. Then E is invariant by T , and R is 

h h 

the direct sum of the E . To sum up, 
h 

m 
Proposition A.1.1. Let T be a linear transformation of R into itself. T has a 
""' ........ Z..:S ~,..... 44 

block diagonal matrix representation if and only if there exists a collection 

m 
of linear subspaces Eh of R h = 1, ••• , r , 

m 
~ T , and 2) R is the direct sum of the E 

h 

such that 1) each E is invariant 
h 

The real canonical matrix representation of T is obtained when the 

invariant subspaces E are taken to be the "real generalized eigenspaces" of T 
h 

(to be defined shortly), with an appropriate basis. 
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Distinct eiqenvalues 

Let A be the matrix representation of Tin the standard basis. We recall 

that an eiqenvalue À of Tisa (possibly complex) number such that At= Àt has 

a nonzero solution t , where t is an m-dimensional vector, the coordinates of 

which may be complex numbers. Such a nonzero solution t is called an 

eiqenvector (of T) corresponding to À. The set of (zero and nonzero) solutions 

t of At= Àt is the eigenspace corresponding À , and is noted E(À) . 

E(À) is a complex vector space, i.e. if t , n are in E(À) and z is a 

complex number, then t + n and zt are also in E(À) . If, however, À is real, 

m 
the equation At= Àt has a nonzero solution x in R , a real eigenvector. The 

real eiqenspace F(À) is then the set of all real solutions of A~= Àt . F(À) is 

m 
a linear subspace of R , and E(À) is its "complexification'' : every ~ in E(À) 

is of the form u + iv , where u , v belong to F(À) and i = VJ. 

If the eigenvalue is nonreal, i.e. À= a+ ib with b ~ 0 , then every 

eigenvector ~ corresponding to À must be nonreal, i.e. have the form u + iv 

m 
where u , v are vectors of R and v ~ 0 . In that case, the complex conjugate 

of À , i.e. À= a - ib , is also an eigenvalue, and t = u + iv belongs to E(À) 

if and only if its complex conjugate ~ = u.- iv belongs ta E(À) . This follows 

from the fact that At= À~ is equivalent, through complex conjugation, to 

m 
A~= À~. Consider next the set F(À) of all vectors of R that lie in 

E(À) + E(À) , i.e. that are of the form t + n , where t and n belong to E(À) 

and E(À) , respectively. If~= u + iv belongs to E(À) or E(À) , then u , v are 

in F(À) , since u = (~ + ~)/2 and v = (~ - t)/2i . The set F(À) is a linear 

m 
subspace of R , and one can verify that E(À) + E(À) is its complexification. 
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By a slight abuse of language, we call F(À) the real eigenspace corresponding 

to À (or À) , although it does not contain any eigenvector. 

It is clear that every eigenspace E(À) or F(À) is invariant by T . 

Eigenvalues are found by solving, in the complex plane, the polynomial 

equation 

where I is the m-dimensional identity matrix, and p(À) is the determinant of 

A-À!. The expression p(À) is called the characteristic polynomial of T (or A). 

Its degree is m. T has distinct eigenvalues if the characteristic equation 

p(À} = 0 has rn distinct roots. The following result shows that T has a 

particularly simple rnatrix representation when its eigenvalues are distinct. 

m 
Theorem A.1.2. Let T be a linear transformation of R into itself, with 

distinct eigenvalues. Then every eigenspace E(À) is one-dimensional. Let the 

real eigenvalues be À , ... ,À , and the nonreal eigenvalues beµ , µ , ..• , µ , 
1 r 1 1 s 

m 
µs with µk = ak + ibk , bk > 0 for all k , and r + 2s = m . Then R is the 

direct sum of the real eigenspaces F(À J, ... ,F(À J,F(µ ), .•• ,F(µ J • The 
1 r 1 s 

dimension of each F(À) is one. while the dimension of each F(µ ) is two. 
h k 

m 
Each of these eigenspaces is invariant by T . Moreover, R has a basis in which 

T has the following black diagonal matrix representation 



À 

B = 

for k = 1 , ••• , s . 

1 

À 
r 

D 
1 

7 

D 
s 

with D 
k 

-
- [ab: - ::] 

Remark A.1.3. ln the theorem, the basis is obtained in the following manner. 

The first r elements are real eigenvectors x in F(À) h = 1 , ... ,r . For each 
h h 

k = 1 , ... ,s,<v ,u > is a basis for F(µ ) , where u + iv is an eigenvector in 
k k k k k 

E(µ ) • The whole basis is actually <x , ••• ,x )v ,u , .•. ,v ,u > • For details, 
k Î r11 SS 

see Hirsch and Smale (1974), Chapter 4, Section 2. 

Multiple eigenvalues 

We look now at the case in which T may have multiple eigenvalues. The 

characteristic polynomial can always be factorized as 

where the>. are 
i 

of À . One has n 
i 

n > 2 . 
i = 

p(>.) -

the distinct 

+ ••• + n = 1 Q 

( À 
1 

À) 

n 
1 

( À 
Q 

n 
À) Q 

eigenvalues of T , and n is the multiplicitv 
i 

m , and T has multiple eigenvalues if some 

In such a case, one has to introduce the notions of "generalized" 

eigenvectors and eigenspaces. Let>. be an eigenvalue of T , and nits 
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* 
multiplicity. The generalized eigenspace E (À) corresponding to À is the space 

n 
of m-dimensional complex vectors E that solve CA - Àl) E = 0 • If E is in 

* E (À) and E ~ 0 , then Eisa generalized eigenyector. Of course if n = 1 , 

these notions reduce to the usual concepts of an eigenspace and an eigenvector. 

The arguments employed above to define real eigenvectors or eigenspaces 

* 
apply equally well here. If À is real, the space of all vectors in E (À) that 

* are real, is the generalized real eigenspace F (À) corresponding to À. If xis 

* in F (À) and X ~ 0 
' 

it is a generalized real eigenvector. If À is nonreal, the 

* the genera]jzed real eigensi;iace F (À) (corresponding to À) is the set of a 11 

* * -real vectors of E (À) + E (À) . Here again, there is a slight abuse of language 

in such a definition, since there are no real generalized eigenvectors when À 

is nonrea 1. 

* * 
One can verify that the dimension of E (À) is n ; the. dimension of F {À) 

* * is thus n when À 1s real, 2n otherwise. It is easy to see that E {À) and F (À) 

are invariant by T • 

m 
Theorem A.1.4. W T be a ljnear transformation of R into itself. Let 
""75 ---~~ 

À , ••• ,À be its distinct real eigenvalues, with À having multii;ilicity n 
1 r h h 

§fil!µ ,µ , ••• ,µ ,µ its distinct nonreal eiqenvalues, with µ = a + 1b , 
11 SS k k k 

b > 0 , having multipljcitv n 
k k 

m 
• Then R is the direct sum of the generalized 

* * * * * real eigensi;iaces F (À >, •.. ,F {À ),F {µ >, ••• ,F {µ > . The dimension of F (À> 
1 r 1 s h 

* i.§. n , while the dimension of F (µ ) is 2n . Each of these eigenspaces js 
h k k 

invariant bv T. 
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m 
Moreover, R has a basis in which T has the following block diagonal 

matrix representation 

A 
1 

B = diag<A , •.. ,A ,6 , .•• ,6 > = 
1 r 1 s 

A 
r 

6 
1 

6 
s 

1) for each h ~ 1, ... ,r , the matrix Ah is nh-dimensional, block 

diagonal, every block on the diagonal being of the form 

À 
h 

1 

À 
h 

À 
h 

The number of these blocks is egual to the dimension of the eigenspace E('A) 
h 

2) for each k = 1 , ... ,s , the matrix 6 is 2n -dimensional, black 
k k 

diagonal. every black on the diagonal being of the form 

D 
k 

I • 
2 . 

I D 
2 k 

D 
k 



D 
k 

= 

a - b 
k k 

b a 
k k 

10 

I the two-dimensional identitv matrix. 
2 

The number of these blocks is egual to the dimension of the eigenspace ECµ ). 
k 

The above block diagonal matrix representation is called the real 

canonical Cor Jordan) form of T. The block diagonal canonical representa­

tion is unique, up to the order of the blocks on the diagonal. Of course, it 

reduces to the matrix representation of Theorem A.1.2 in the case of distinct 

eigenvalues, i.e. when n = n = 1 for all h and k . As an incidental remark, 
h k 

the above theorem implies that a matrix Ais invertible if and only if none of 

its eigenvalues is eoual to zero. 

Remark A.1.5. In the Theorem, the basis is the union of bases for each 

* * * * generalized real eigenspace F (~ ), •.. ,F (À ),F (µ ), ... ,F (µ ) , in that 
1 . r 1 s 

* 
order. For F (µ ) , the basis is of the form <v ,u , ... ,v ,u > , where 

k 1 1 s s 
* 

<u +iv , ••. ,u +iv > is a basis for E (µ ) • For details, see Hirsch and Smale 
1 1 s s k 

(1974, Chapter 6, Section 4, and Appendix III). 

A.2. The implicit function theorem 
~~ ,,. ~ ~ '"' ,.,., 

m m r 
Let G be a map from an open subset W of R into R . We say that Gis C 

with r > 1 , if G has continuous parti?l derivatives of every order 
= 

h = 1 , ... ,rat each point of W Gis an homeomorphism if it is continuous and 

-1 
one ta one, and if its inverse G (a map from G(W) onto W) is ilso continuous. 



r r 
Gis a C diffeomorphism if it is C and one to one, and if its inverse is 

r 
also C 

1 
If Gis C , the matrix of partial first derivatives at a point x of W 

is called the Jacobian matrix of Gat x , and is noted DG(x) 

r 
The following result gives conditions ensuring that a C map is locally 

a diffeomorphism. 

r 
Theorem A.2.1. (Inverse function theorem). Let G be a C map from an open set W 

u ........... 

m m 
in R into R , with r > 1 . W x be a point of W and assume that the 

= 
Jacobian matrix DG(x) js invertible. Then x has an open neighbourhood U such 

r 
that the restriction of G to U ~ C diffeomorphism onto the open set G{U) . 

-1 
Under the conditions of the theorem, we shall say that G : G(U) ~ U is 

a local inverse of G . Application of the inverse function theorem permits then 

to see when an implicit equation F(x,y) = c can be solved and generate, at 

least locally, a functional relation of the form y= G(x) . 

Theorem A.2.2. (lmplicit function theorem). Let~ be an open set in Rm x RD , 
_.., ,., u , .. ,.,,,_ 

r . D 
and F 2 C map from W 1nto R , that is (x,y) ~ F(x,y) where x and y are 

m P 
vectors of R and R , respectivelv. Let (x ,Y) in W be such that F(x ,Y = c 

0 0 0 0 

and suppose that the Jacobian matrix of the map F(x ,.) is invertible at 
0 

y = y 
0 
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m 
fill.Q RP Th~n there are oi;;ien s~ts U and V in R ' 

resQectivel~. with X 
0 

r 
u , y in V and u X V contain~d in w 

' 
and a uoigue C !Il.aQG : u .... V , filfill 

0 

1hfil 
F(x,G(x)) = C 

for a 11 X in u , and mor~ov~r. F(x,y) '1- C if x is in u , y in V and y '1- G{x) 

Notes on the literature 

The material of Section A.1 can be found in any textbook on linear 

algebra. The presentation here is adapted from Hirsch and Smale (1974), see 

also Palis and de Melo (1982, chap. 2.2). For a proof of the inverse and the 

implicit function theorems, see Hirsch and Smale (1974, Appendix IV). 

in 

. 
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B. LINEAR AND NONLINEAR DIFFERENCE EQUATIONS 

We shall be concerned in this appendix, and in the next two ones, with 

the qualitative behaviour of the trajectories generated by a difference 

equation of the form 

(B. 1) x = G(x) 
n+1 n 

m m 
in which Gis a map from an open subset U of R into R . Our first specific 

task, which will be carried out presently, is to proceed to such a study in the 

immediate vicinity of a fixed point of G Calso called a stationarv state, an 

eguilibrium point), i.e. an element x of U such that x = G(x) . It will be seen 

in particular that if Gis continuously differentiable, the trajectories 

generated by (8.1) that are close enough to x, are generally similar to those 

that are as.sociated to the "linearized" version 

(8.2) X - X= DG(x) (x - x) 
n+1 n 

in which DG(x) stands for the Jacobian matrix of G, evaluated at the fixed 

point. 

A frequently encountered situation giving rise to a formulation such 

as (8.1) is the following one. Suppose that the successive states y of a given 
n 

(physical, social) system must satisfy 

(8. 3) F(y ,Y , ... ,y ) = 0 
n+1 n n-N 

in which each y is a vector of RD , and F is a Cr map from an open set W of 

p(N+2) p p 
R into R Let y be a stationary state, i.e. a vector of R such that 

F(y, ... ,y) = 0 , and assume that the Jacobian matrix of the map 
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y~ F(y,y, ... ,y) , evaluated at y, is invertible. The lmplicit Function 

Theorem A.2.2 implies that (8.3) can then be solved in y in a neighbourhood 
n+1 

p(N+1) 
of y. That is, there exist open sets U in R 

r 

and V in RD , containing 

(y, •.• ,y) and y respectively, and a unique C map H U ~ V such that 

(y ,Y , ••• ,y ) satisfies (8.3) , with (y , ... ,y ) in U and y in V, if 
n+1 n n-N n n-N n+1 

and only if 

(8.4) y = H(y , ... ,y ) . 
n+1 n n-N 

The resulting "delayed" difference equation can now be cast in the form (8.1) 

by considering the variable x = (y , .•. ,y ) , and the map G that associates 
n n n-N 

to every such x in U the vector x = (y , ... ,y ) , with y given by 
n n+1 n+1 n-N+1 n+1 

(8.4). One may note that x = (y, ... ,y) is a fixed point of G , and that the 

Jacobian matrix of Gat x has the form 

DG(x) = 

D H 
0 

I 
P. 

D H 
1 

0 

D H 
N 

I Ô 
p 

in which D H , k = O, ..• ,N , stands for the matrix of partial derivatives of H 
k 

with respect to the components y , evaluated at (y, •.• ,y) , and I is the 
n-k p 

p-dimensional identity matrix. It is easy to see that DG(x) is invertible if 

and only if D His itself invertible. In that case, by the Inverse Function 
N r 

Theorem A.2.1, one can choose U small enough to ensure that Gis actually a C 

diffeomorphism onto the open set G(U). 



8.1. Stability -
t5 

Consider the difference equation (8.1) in which G maps the open subset U 

m m 
of R into R . For any x in U , ohe constructs the trajectory (or the orbit) 

n 
of x by using repeatedly (8.1) for n > 0 : x = x , x = G(x), ... ,x = G {x) 

1 n = 0 
n 

in which G (x) is the n-th iterate of x and is defined recursively through 

n n-1 n 
G (x) = G(G (x)) • Of course, it may occur that for some n , G (x) no longer 

belongs ta U in that case, the orbit leaves the domain of definition of Gand 

is defined for only finitely many n > 0 . If x belongs to an invariant set K , 

i.e. a subset of U such that G(K) is contained in K , then the orbit of xis 

defined for all n > 0 . This will be the case for all x , in particular, if 

m 
U = R 

= 

A fixed point x of Gis stable if for every open subset V of U 

containing x, there is an open subset V of V, with x also in V , such that 
1 1 

n 
for every x in V , the iterates G (x) are well defined and belong ta V for all 

1 
n 

n > 0 • If in addition, V can be chosen sa that the distance of G (x) ta x 

tends ta zero as n ~ + œ for each x in V , then xis asymptotically 
1 

stable. A fixed point is unstable if it is not stable. 

Remark 8.1.1. The foregoing notions of (asymptotic) stability apply not only ta 
~ 

fixed points, but also to any closed set K , without any change. 

Remark 8.1 .2. The analysis of the present appendix applies immediately ta the 

, n 
study of what happens near a periodic orbit. Suppose that G (y) = y for some y 

j - -
in U and n > 1 , with G (y) t y for j = 1, ..• ,n-1 . Then y is a periodic point, 

of period n , and the corresponding periodic orbit is defined as y , 

n-1 n 
G(y), ... ,G (y) . The map F = G is defined at least on a small open 
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neighbourhood V of y. Stability or unstability of the periodic orbit in the 

dynamics generated by Gis equivalent to stability or unstability of the fixed 

point y in the dynamics generated by F . 

B.2. Change of variables 
~ ,.,. • • ~ • n -

There is npthing intrinsic in the formulation embodied in (B. 1). Indeed, 

one may always make a change of variables of the form y= h(x) in which y is 

m m 
a vector of R and han homeomorphism from R onto itself. The difference 

equation obtained after the change of variable is y = F(y) , in which 
n+1 n 

-1 m 
F =ho Go h is a map from h(U) into R (actually, h need be defined only on 

an open set containing both U and G(U)) . The two maps F and Gare then said to 

r r 
be topologiçallv conjugate. If h is a C diffeomorphism, they are C conjugate. 

Clearly, two difference equations (or two maps) deduced from each other through 

conjugation generate the same trajectories (up to the change of variable) ; 

they must therefore be viewed as eauivalent. 

Such an equivalence relation may be only local. Let x be a fixed point 

of G , and consider another map y~ F(y) , with fixed point y. Then Gis 

r 
locallv topologicallv (or C) conjugale to F if there is an open neighbourhood 

V of x, and an open neighbourhood W of y, such that the restriction of G to V 

r 
is topologically (or C ) conjugate to the restriction of F to W. In that case, 

only the orbits generated by G that are sufficiently near x, are the same, up 

to the change of variable, to those of F that are near y. 

This notion of equivalence between maps or difference equations is 

important, since it allows one transforming a given difference equation, which 

may be difficult to analyse, and bringing it through an appropriate change of 
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variables into a more tractable form, where the qualitative features of the 

trajectories may be more clearly seen. This equivalence notion leads also, 

quite naturally, to the idea of structural stability. 

If the equation CB.1) is meant to describe the evolution of some 

physical or social phenomenon, one cannot be exactly sure about all the details 

of the specification. To get reliable results, one should accordingly work with 

maps G that yield a qualitative picture that remains unaltered, up to a change 

of variable, when they are slightly perturbated. To be precise, assume that 

m r r m 
G: U ~ R is C , and let us endow the space of all C maps F : U ~ R with the 

r 
socalled C - topologv, i.e. the topology of uniform convergence, on compacta, 

of the values of the fonctions and of its derivatives up to the order r . 

r 
The map Gis then C - structural)v stable if there is a neighbourhood V of G , 

r r 
in the C topology, such that all C perturbations F of G that lie in V , are 

conjugate to.G. The qualitative features of the trajectories generated by a 

structurally stable map are unchanged after small perturbations. 

r 
Here again, structural stability may be required only locally. The C 

m r 
map G: U ~ R is C locallv structurallv stable (near a fixed point x) if 

there exists an open neighbourhood V of x such that the restriction of G to V 

r 
is C - structurally stable. 

The foregoing notion of structural stability involves arbitrarv small 

perturbations of the map Gunder consideration. If particular features of the 

phenomenon to be represented impose restrictions (e.g. symmetry) on the class 

of maps to be considered, then of course, perturbations and structural 

stability should be defined relatiye]v to this particular class of maps. 
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Remark B.2.1. Difference equations may be defined more generally on manifolds 
.c*r«.t ·~ ...... 

P r 
(a subset M of R is a C manifold of dimension m < p, if each element of M 

r 
has a neighbourhood V for which there is a C diffeomorphism that maps V onto 

m 
R ). We shall need only exceptionally ta consider explicitly such a more 

general formulation. But it may be worth noting at this stage that the study of 

the qualitative properties of trajectories near a fixed point in such a case, 

may be reduced to the analysis of the text, through an·appropriate change of 

variable. Specifically, let y 
n+1 

= FCy) be the difference eqüation to be 

studied, where F is a map from an 

into M. If y is a fixed point of 

m 
diffeomorphism h mapping V onto R 

n 
r 

open subset of a C m-dimensional manifold 

F, there is a neighbourhood V of y I and a 

If F is continuous, there is an open 

M 

C 

neighbourhood W of y such that both W and F(W) are subsets of V • Making the 

change of variable x = h(y) , with y in W , shows that the restriction of F to 

r m -1 
W is C conjugate to the map G : U ~ R , where U = h(W) and G =ho F oh 

B.3. Linear difference equations 
~.,,, ,-,~ ' 

Linear difference equations of the form 

(8.5) x = Ax 
n+l n 

m 
in which xis a point of R and Ais an m-dimensional square matrix, are 

important to study on their own right. In addition, as mentioned earlier, the 

trajectories associated to a nonlinear difference equation like CB.1) that are 

near enough a fixed point x, generally behave qualitatively as those 

associated to the linearized version (8.2). 

An obvious fixed point of (8.5) is the origin x = 0 , and an important 

issue is to determine its stability. The issue is not difficult to analyze, 

r 



19 

m 
since the orbit of a point x of R through the repeated action of (8.5) is 

0 
n n n 

given by X = A X J in which A is the n-th power of A, for all n > 0 • A 
n 0 = 

may not be easy to compute, however, so we appeal to Theorem A.1.4, to assert 

the existence of a linear change of variable x = Py, 1n which Pis invertible, 

that transforms (8.5) in 

(8.6) y = By 
n+1 n 

-1 
where B = P AP is the real canonical form of A The matrix 8 is much easier 

to work with, since it is block diagonal, i.e. 8 = d1ag<B , ..• ,B > 
1 p 

in which 

* 
each 8 is the matrix corresponding to a generalized real eigenspace F 

i i 

associated to an eigenvalue (and its conjugate if it is nonreal), equiped with 

a canonical basis. Since each eigenspace is invariant under the action of 

CB.6>, one can solve separately each equation t: = B t: , where t: is a 
n+1 i n 

* n 
vector in the eigenspace F , which leads to ~ = 8 t: . Complete solutions 

i n i 0 

of (8.6) are obtained by piecing together the solutions associated to each 

eigenspace, and one gets the solution of the original problem by making the 

change of variable x = Py. 

Distinct eigenvalues 

When A has distinct eigenvalues, the form of B was given in Theorem 

A.1.2. Restricting attention to the real eigenspace f(À) corresponding to the 

real eigenvalue À leads to the onedimensional difference equation t: = À~ 
n+1 n 

n 
or equivalently to the geometric sequence t: = À ~- , in which the real number 

n o 

~ is the coordinate of y in FCÀ) . Thus if IÀI > 1 
n n 

the sequence lt: 1 
n 

diverges monotonically to +~for every nonzero initial value t: • If IÀI < 1 , 
0 
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the sequence converges to O, all points going to O on first iterate when À= 0 

(the map ~~À~ is then noninvertible). If À= 1 , then all points of F(À) are 

fixed points. If À= - t , all points of the eigenspace that differ from O are 

periodic, with period 2 . The restriction of (8.6) to F(À) is orientation 

preserving when À> 0 , and orientation reversing when À <.0 • 

Considering on the other hand the real eigenspace F(µ) corresponding to 

the nonrea 1 eigenva lue 1,.1 = a+ib , with b > 0 , leads t.o the twodimensiona 1 

difference equation 

~ = D~ 
n+t n with O = [: -:1 

n 
or equivalently ~ = D ~ , where the twodimensional vector ~ represents the 

n o n 

coordinates of y in the canonical basis of F(µ). Setting a= Q cos 8, 
n 

b = p sin 8 with p = lµI i O and O < 8 < w , one verifies easily that the 

2 
action of D in R is a rotation of angle 8 around the origin, followed by an 

homothecy, the center of which is the origin, with ratio p , see Fig. B.1. Thus 

n 
D = 

n 
Q [ 

c~s no 

sin no 

-sin 

cos 

no ] 

ne 

If 11,.11 > 1 , the sequence 1~ 1 diverges monotonically to + ~ whenever ~ ~ 0 • 
n o 

It converges monotonically to O when 11,.11 < t (the map ~ ~ D~ is then a 

contraction). If 11,.11 = 1 , Dis a rotation of angle 8 around the origin. Thus 

IY 1 = IY I for all n , and every circle with center the origin is left 
n o 

invariant by D . If 8 is of the forrn 2wp/q , where p and q are positive 

integers that are relatively prime, every point y~ 0 of the plane is periodic, 

with period q , since then Dq y= y. If o/2w is irrational, no point of the 



plane is periodic ; the trajectory generated by y * 0 is in fact dense in the 
0 

circle centered at the origin of radius IY 1 • In all cases, the restriction of 
0 

(8.6) to the real eigenspace F(µ) is orientation preserving. 

Fig. 8.1 

An important remark is in order here. The foregoing contracting (or 

expanding) properties of the application t ~ Dt are valid when one uses the 

2 
Euclidean norm ltl of R . These properties do not hold any longer, in general, 

when the application is expressed in another coordinate system, e.g. through a 

change of variable x = Qt , where Q is an invertible 2-matrix, if one sticks to 

,... 1 
the Euclidean norm lxl . Clearly, however, the map x ~ QDQ x has the same 

contracting or expanding properties as t ~ Dt , if one chooses the norm 

-1 
llxll = 10 xi, 

Multiple eigenvalues 

When A has multiple eigenvalues, the real canonical form 8 is more 

complicated, and a little more care is needed. Consider first the case of a 

multiple real eigenvalue À • As stated in Theorem A.2.4, the matrix A 

* 
associated to the corresponding real generalized eigenspace F (À) in the real 

canonical form, is block diagonal and composed of blacks of the form 

À 

L = 

À 

Consider one of these matrices L , and let p > 2 be its dimension (the case 
= 
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p = 1 was already analyzed for distinct eigenvalues). Restricting attention to 

the subspace spanned by the elements of the canonical basis associated to L , 

n 
one is led to study the equation f: = Lf: , or f: = L f: for n > 0 , where 

n+1 n n 0 = 

the p-dimensional vector f: represents the coordinates of y in the subspace 
n n 

under consideration. 

n 
To compute conveniently L , remark that L = S + N , in which the 

diagonal matrix Sis Àl and 
p 

0 

N = 

0 

The two matrices Sand N commute, i.e. SN= NS , and thus 

Ln = ~ ( h ) À n-h Nh 
h=O n 

0 
with the convention N = I • It is easily verified that 

p 

0 

0 
2 p-1 

N = ' ••• 1 N = 

0 0 

The components off: are then given by the formulas 
n 

n 
(f: ) = À (f: ) 

n 1 o 1 

n + ( n1 ·) (() =À(f;) 
n 2 o 2 

n-1 
À ( f: ) 

0 1 

[1 l p 
and N = 0 • 
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n n-s 
( E: ) = À ( E: ) + À ( E: ) À ( E: ) 

n P 0 p 
( 1 ) n-1 

n o p-1 + ••• + ( ~ ) o p-s 

with s = Min(n,p-1) . It fo llows that 1 E: 1 .. 0 when 1 À 1 < 1 , and that 
n 

1 E: 1 -+ + 00 when E: 'I O and l>,.I > 1 , as n goes to + ... The convergence (or 
n 0 

divergence) need no be monotonie here, however. But one may show that there 

exists a norm I IE:I I such that the map E:-+ LE: is a contraction of modulus k < 

when IÀI < 1 (such that the same property is true for the inverse mapping 

-1 
E:-+ L E: when IÀI > 1). If IÀI = 1 , the origin is unstable. One may verify 

* 
that the restriction of (8.6) to F (À) is orientation preserving if>,.> 0 , or 

if À< 0 and the multiplicity of>,. is even, and that it is orientation 

reversing if À< 0 and the multiplicity of À is odd. 

= 

The case of a multiple nonreal eigenvalue µ=a+ ib , b > 0 , is 

·handled by similar·methods. According to Theorem A.2.4, the matrix 6 associated 

* 
in the real canonical form to the real generalized eigenspace F (µ) , is block 

diagonal and composed of blacks of the form· 

M = 

D 

I 
with D 

I D 

-- [ab 

Consider one of these matrices M and let 2q , with q > 2 , be its dimension 

(again, the case q = 1 was analysed for distinct eigenvalues). Restricting 

attention to the subspace spanned by the elements of the canonical basis 

corresponding to M 
' 

leads to the study of the equation ( = Mt , or of 
n+1 n 

n 
sequence E: = M E: n > 0 where E: stands for the coordinates of y in 

n 0 = n n 

(8.6) in the subspace under consideration. 

the 
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One has here M = S + N, in which 

The matrices Sand N commute, and thus 

n-h 

N = 

0 

I 

I 0 

The form of D was given when considering distinct eigenvalues. If a= p cos8 

b = p sine with p = lµI and O < 8 < v , then 

n-h n-h 
D = P 

h 

[ 

cos(n-h}8 

sin(n-h)8 

As for N , it is easily verified that 

0 

0 
2 

N = I , . . . , 

I 0 0 

-sinCn-h)e l 
cos(n-h)8 

[1 l q-1 Q 
N = and N = 0 • 

n 
The components of~ can then be easily computed from ~ = M ~ , in 

n n o 

much the same way as for real eigenvalues. It will suffice here to remark that 

each component of~ is a linear combination of terms of the form 
n 

n-h n-h 
p cos(n-h)e Q sin(n-h)8 
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with h = 0 , ..• , Min(n,Q-1) , the coefficients being determined by the initial 

vector E . It follows here again that IE 1 ~ 0 when p = lµI < 1 , and 
o n 

IE 1 ~ + • when E i O and lµI > 1 , as n diverges to + •. The convergence or 
n o 

divergence need not be monotonie. But there exists a norm I l~I I such that 

E ~ ME is a contraction of modulus k < 1 when lµI < 1 (the same being true of 

-1 
the inverse mapping E ~ M E if lµI > 1) • If lµI = 1 , the origin is 

* 
unstable. In all cases, the restriction of (8.6) to F (µ) is orientation 

preserving. 

This completes the analysis of the solutions of CB.6). One important 

feature of the solutions is the follow1ng one. 

n 
Theorem B.3.1. Everv component of y = B y , n > 0 , is a ljnear combination 
~ ·-~ n o 

of terms of the form 

ln) 
n-h 

p cos(n-h)8 
n (

hn) n n-h ~ sin(n-h)8 

where >,. = p(cose + i sine> is an eigenvalue with multiolicitv k > 1 , fillQ 
= 

h = O, ••. ,Min(n,k-1) with weights determined bv the initial yector y Creal 
0 

eigenvalues correspond to e = O,w) • The solutions to CB.5) , being obtained 

through the linear transformation x = Py , have the same qualitative 
n n 

feature. 
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The other important finding concerned the stability of the origin in 

(8.6), and thus in (8.5). To state the results neatly, it is convenient to 

introduce the following notation. Let A , ... ,À be the distinct real 
. 1 r 

eigenvalues of A and - - its distinct nonreal eigenvalues. , µ1 , µ1 , ... ' µ , µ 
s s 

s 
The stgble space F of the origin is defined as the space spanned by a 11 the 

* * 
vectors that lie in the real generalized eigenspaces F (A ) or F (µ ) such that 

h k 
u 

The unstable space F is the space spanned by the 

* * C 
eigenspaces F (A ) or F (µ ) such that IÀ I or Iµ 1 > 1 . The center space F 

h k h k 

is the space spanned by all the real generalized eigenspaces corresponding to 

S U C 
an eigenvalue of modulus 1. Each of these spaces F , F , F is of course 

invariant under (8.5). Moreover 

m 
Theorem 8.3.2. There exist a norm l lxl 1 in R and two constants 0 < k < 1 < --~~ ~ = s 

n 
sych that evec~ solution X = A X of (8.5) with X "I 0 satisfies 

n 0 0 

n s 
1. Il X Il < k Il X 11 when X E F , for a 11 n > 1 . 

n = s 0 0 = 
n u 

2. Il X 11 > k Il X Il when X E F , for a 11 n > 1 . 
n u 0 0 = 

C 

3. The seguence X does not converge to 0 when X E F 
n 0 

If all eigenvalues of A are such that IAI < 1 , the origin is a sink ; 

if IAI ~ 1 for some eigenvalues and IAI > 1 for the others : a saddle point, 

and if !Al > 1 for all eigenvalues : a source. 

Structural stability 

It is clear that the linear map x ~ Ax cannot be structurally stable 

k 
u 
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m 
(even in the class of linear applications of R ) if one of the eigenvalues (or 

C 

more) has modulus one. For the trajectories lying in the center space F can 

then be removed by a slight perturbation of the matrix A. Nor can it be 

structurally stable if one of the eigenvalues (or more) is O. One may expect, 

however, the linear map to be structurally stable if these two "borderline" 

cases are assumed away. This conjecture is confirmed by the following fact. 

Theorem B.3.3. Assume that the m-dimensional matrix A has no eigenvalue of 

modulus egual to O or 1. Then the linear map x ~Axis structurally stable in 

m 
the class of all linear maps of R 

B.4. Hyperbolic fixed points 
~ u,.., • '-" ,..__., -~ 

Let us go back to the nonlinear difference equation 

<B. 7) x = G(x) 
n+l n 

r 
where the map G : U ~ R is C , and consider a fixed point x of G . A common 

procedure for studying the solutions of this equation near x , is to linearize 

it and to analyse the solutions of the associated linear equation 

(8.8) y = DG<x> y 
n+l n 

in which DG(x) is the Jacobian matrix of Gat x. The following fact implies 

that the procedure is valid, provided that DG(x) is invertible Chas no zero 

eigenvalue), and that xis a ru.12.erbolic fixed point, i.e. DG(x) has no 

eigenvalue of modulus 1. 

r m 
Theorem B.4. 1. Let G be a C map, r > 1 , from the open subset U of R into 

= 
m 

R Let x be a hyperbolic fixed point such that the Jacobian matrix DG(x) is 
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invertible. Then Gis locallv topoloqically coniugate to the linear map 

y -+ DGCx) y 

It follows from the analysis of the previous section that under the 

conditions of the theorem, the fixed point xis asymptotically stable if all 

eigenvalues A of DG(x) satisfy IAI < 1 , and that it is unstable when one of 

them is such that IAI > 1 • As a matter of fact, this conclusion is valid even 

when some eigenvalues of DG(x) are O . 

r m 
Corollary 8.4.2. Let G ~ C map, r > 1 , from the open subset U of R into ... .. ...-. , ,.,,,. 

m 
R , and x a hvoerbolic fixed point. Then xis asvmptoticallv stable if all 

eiqenvalues A of DG(x) satisfv IAI < 1 , and unstable if IAI > 1 for some A • 

In view of the result concerning the structural stability of linear maps 

of the previous section (Theorem 8.3.3), one should expect, under the 

assumptions of Theorem 8.4.1, the map G to be locally structurally stable. 

Indeed 

Corollary 8.4.3. Under the assumptions of Theorem 8.4.1, Gis locallv 
p C ""'-'-1111 u A tr: U • 

structurallv stable. 

8.5. Invariant manifolds 
~- "'-' ~ .,_., n..a... 

'·· It is convenient, when studying the solutions of a linear difference 

equation x = Ax , to split the analysis into three parts, by looking 
n+l n 

separately at what happens in each of the three invariant subspaces that were 

s u 
introduced in Theorem 8.3.2 : The stable space F , the unstable space F and 
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C 
the center space F of the matrix A. It turns out that a similar decomposition 

is also possible in the case of a nonlinear difference equation x = G(x) , 
n+1 n 

at least locally, i.e. near a fixed point x. The role of the above spaces is 

then played by local invariant surfaces that are tangent to the stablè, 

unstable and center spaces of the Jacobian matrix DG(x) , respectively. 

m r 
To be specific, assume that G : U ~ R is C , r > 1 , and that xis a 

= 

fixed point. Given a neighbourhood V of x, a local invariant manifold W(x) is 

1 
a C manifold (a continuously differentiable surface) passing through x and 

contained in V, such that x E W(x) , x EV and G(x) EV imply G(x) E W(x) . A 

s 
local stable manifold W(x) is then a local invariant manifold that is tangent 

s 
at x to (and has the same dimension as) the stable space F of the Jacobian 

U C 

matrix DGCx) • Similarly, a local unstable Cor center) manifold WCx) Cor W(x)) 

is a local invariant manifold that is tangent at x to (and has the same 

U C 
dimension as) the unstable Cor center) space F Cor F ) of DGCx) . 

r 
Theorem B.5.1 . .l...e1 x be a fixed point of the C !!!aQ G from the open subset U of 
.,,,, • .,, u ~ 

m m 
R .i.!nQ R (r > 1 ) . Ihen tbere exists a oeigbbourbood V .Qf x such that 

= s r 
1. There is a unique local stable manifold WCx) 1n V . .li...ll C 

2. li DGCx) js invertible, there is a unique local unstable manifold 

u -1 
WCx) 1n V Cit is actual]v the local stable manifold of tbe local inverse G > 

r 
.il.._i§ C . 

3. Supposer> 2 . There is a (generallv nonuniaue) local center 

C r-1 n . 
manifold W in V. It is C . <x>- , and locallv attracting : if x and G Cx) ~ 

in V for all n > 1 , then the 
n C 

distance between G Cx) and WCx) tends to O .s..S. 



Of course, in the foregoing statement, if the dimension of one of the 

spaces F is O (if the space reduces to the origin), the corresponding local 

manifold vanishes. Fig. 8.2 describes local stable and unstable manifolds in 

2 
the case of a hyperbolic fixed point in R 

Fig. 8.2 

Motion on the local stable and unstable manifolds 

Since the local stable and unstable manifolds are diffeomorphic, near x, 

s u 
to the stable and unstable spaces F and F of the Jacobian matrix DG(x} , one 

should expect, by analogy to Theorem B.4.1, the restriction of G to these 

manifolds to behave near x like the restriction of the linearized map 

s u 
X~ DG(x) X to F or F . Indeed, 

Theorem B.5.2. Suppose that Gis as in Theorem B.5.1, and that DG(x) i§. 
Pa a.._ 

s u 
invertible. Let B , B be the submatrices in the real canonical form of DG(x), 

s u 
that correspond to the stable and unstable spaces F gnd F , respectivelv. 

1. The restriction of G to the local stable (resp. unstable) manifold is 

s s 
locally topologicallv coniugate to the linear-1!@.P x ~ B x , x E F (resp. 

u u 
X~ B X , XE F ). 

m s u 
2. There is a norm I lxl I of R , and two constants k < 1 < k such that 

if ô > 0 is small enough 

s 
a. 1 IGCx) - xi 1 < k 

= 

s 
!lx - XII for all X J...n \.J(x) , !lx - XII ( é • 
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u u 
b. 1 IGCx) - xi 1 > k 

= 
!IX - xi! for all X in W(x), !lx - xi! ( Ô. 

Motio~ on a local center manifold 

Part 3 of Theorem B.5.1 shows that any recurrent behaviour (e.g. cycles) 

near the fixed point, must occur in a local center manifold. An explicit 

representation of such a manifold, that takes into account possible 

nonlinearities, is therefore useful. It may be obtained through the following 

procedure (the reader will verify easily that the procedure applies to local 

stable and unstable manifolds as well). 

To simplify notation, assume that the fixed point has been translated to 

the origin, i.e. x = 0 , and that a linear change of variables has brought the 

Jacobian matrix DG(x) in its real canonical form, which we write dtag<C,B> in 

C 
which C corresponds to the center space F , and B to the direct sum of the 

s u 
stable and unstable spaces F and F . In terms of the notation of Theorem 

s u 
B.5.2 , B = diag<B ,B > . In the new coordinate system <~.n) , where ~ belongs 

C S U 
to F and n to F + F 

(8. 9) 

, the difference equation x 
n+1 

~ = c~ + fC~ 
n+1 n n 

n > 
n 

n = Bn + g c ~ , n > 
n+1 n n n 

= G(x ) reads 
n 

in which f and gare defined on an appropriate neighbourhood of the origin. By 

r 
construction, the functions f and gare C r > 2 and are equal to O , as well 

= 
as their first partial derivatives, at ~ = 0 n = o 

C C 
Since a local center manifold W is tangent at the origin to F (the 

ex> 
r-1 

n = 0 space), one can represent it as the graph of a C function n = ~(~) , 
C 

that is defined on a (small enough) open ball V in F centered at ~ = 0 , 
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such that 1 and its first partial derivatives vanish at ~ = 0 , see Fig. 8.3. 
C 

The function 1 , near the·origin, is given implicitly by expressing that WCx) 

is locally invariant, that is 

(8.10) 

whenever ~ and C~ + f(~ 1 1C~)) are in V (which will be surely true if~ is small 

enough). Given such a function l, the restriction of the difference equation 

to the local center manifold is obtained by setting n = 1<~) and 
n n 

n = 1(~ ) in (8.9). Clearly, one obtains an equivalent difference equation 
n+1 n+1 

C 
by projecting it on F , i.e. by considering only the equation corresponding to 

the component ~ 

CB.11) ~ = c~ + f<~ , 1<~ >> = rc~ > , ~ E v 
n+1 n n n, n n 

Trajectories in the local center manifold may then be analyzed by using this 

C 
"reduced difference equation" in F , near ~ = 0. 

Fig. B.3 

Equivalent local dYnamics 

Up to now, we confined ourselves to the trajectories that lie in the 

local stable, center and unstable manifolds. The following fact shows that 

these trajectories contain all the information that is necessary to reconstruct 

m 
the dynamics generated by Gin R , near the fixed point : as for the linear 

m 
case, trajectories in R may be considered as the "Cartesian product" of 

trajectories lying in each invariant manifold. Since the motion on the local 

stable and unstable manifolds is locally conjugate to the linear equation 
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s u 
n ~ Bn , with n in F + F , this result can be formulated as 

Theorem 8.5.3. Let G be as in Theorem B.5.1, and assume that DGCx> .1s. 
.,,.,,_,~ • n ~ 

invertible. Then Gis locallv topoloqicallv coniuqate to the application 

defined bv 
s u s u 

n ~ Bn n E F + F , where B = diag<B ,B > 

C 
~ ~ c~ + fC~ , rC~>> = rc~> , ~ E F ~. 

Of course, if the Jacobian matrix DG(x) has no eigenvalue of modulus 1 , 

the foregoing result reduces to Theorem 8.4.1. 

Remark 8.5.4. One cannot get, in general, an exact analytical expression of a .._... _ ___,. 

solution 1 of (8.10), but one can approxfmate it by a Taylor series at ~ = 0 • 

1 C S U 
Suppose that a C function T from F 1nto F + F has been found such that, 

first, T and its first partial derivatives vanish at ~ = 0 , and second 

Tee~+ f(~,T(~))J - BT(~) - g(~,T(~)) = O(l~lp) 

as~~ 0 , for some 
p 

< p < r . Then rC~) =TC~)+ OClxl ) as~~ 0 , see Carr 

( 1981 , Section 2.8). Here the notation OCl~IP> stands for a function a<O such 

that there is a constant k with la(O 1 < k l~lp for~ small enough. ln 

practice, T(~) is chosen as a Taylor series of l . Specifically, one expands l, 

up to the desired order, as well as f and g , as a Taylor series at ~ = 0 in 

(8.10), and one gets the unknown coefficients of the Taylor expansion of l by 

identification of the two members. This shows in particular that although the 

function l defining a local center manifold need not be unique, its partial 

derivatives a~= 0 are nevertheless uniquely determined. Finally, replacing 1 

by fts Taylor approximation Tin (8.11) yields an approximate analytical 
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expression of the reduced difference eQuation in the local center manifold. 

Of course, the principle of such a Taylor approximation applies eQually 

well to local stable and unstable manifolds. 

Notes on the literature 
4111'\w?r • n..., 

The treatment of linear difference eQuations in section 8.3 is a 

transposition of Hirsch and Smale (1974, chap. 6), who deal with differential 

eQuations. The material on hyperbolic fixed points of section 8.4 can be found 

in any book on dynamical systems, see e.g. Hartman (1964), Palis and de Melo 

(1982, chap. 2.4), Guckenheimer and Holmes (1983, chap. 1.4). Section 8.5 on 

invariant manifolds i~ adapted from Lanford (1983), loess (1979, chap. V), Carr 

(1981, section 2.8), Guckenheimer and Holmes (1983, chap. 1.4 and 3.2), Palis 

and de Melo (1982, chap. 2.6). Theorem 8.5.3 follows from Palis and Takens 

(1977) : the analogue result for differential equations (vector fields) is 

stated there p. 341 (see also Guckenheimer and Holmes (1983, p. 130)), and the 

result for diffeomorphisms follows by a suspending techniQue, as p. 340 CI owe 

this reference to A. Chenciner). 
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C. LOCAL BIFURCATIONS 

As we have seen in Section B.3, linear difference equations can produce 

cyclical trajectories when some eigenvalues have modulus 1, but such cycles are 

removed by a small change of the matrix defining the system. By contrast, 

nonlinear maps may generate cyclical behaviour that is preserved under small 

perturbations, i.e. that is structurally stable. A most powerful tool to 

analyse the occurrence of cyclical fluctuations, in many cases the only one 

presently available, is provided by the theory of bifurcations. 

C.1. Introduction 

Consider a family of difference equations indexed by a real parameter a, 

m m 
say x = G (x) , where each G is a map from an open set U of R into R a 

n+1 a n a 

is in an open interval I containing O , and where the dependence on (a,x) is 

r 
C , r > . In many cases, one requires also that G (0) = 0 , for all 

a 

admissible a : this simply means that there is a family of fixed points that 

have been translated to the origin, see Remark C.1.1. The family G undergoes a 
a 

bifurcation, say at a= 0 , if the qualitative features of the orbits of ·G 
a 

change when a moves from negative to positive values. The bifurcation is local 

(at the origin) if the change of the orbit structure can be observed in an 

arbitrarily small (but independent of a) neighbourhood of x = 0 ; the 

bifurcation is global otherwise. We focus here on local bifurcations. A brief 

introduction to global bifurcations, which are far more difficult to 

understand, will be given in Appendix D . 

If a local bifurcation occurs, then in view of Theorem B.4.2, there must 

be an eigenvalue À of the Jacobian matrix DG (0) that either goes through 0 
a a 
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0, = 0) , or crosses the unit circ le in the complex plane ( I>, 1 = 1) , at 
ex ex 

ex= 0 . The case À = 0 is uninteresting, however, since it may change locally 
ex 

a map that is orientation reversing ta an orientation preserving one, but it 

cannot generate cycles near the origin (think of the one dimensional difference 

2 
equation x = exx + OC lx 1) for ex,x small). We shall assume accordingly that 

n+1 n n 

the Jacobian matrix DG (0) is invertible for each admissible ex , and focus on 
ex 

the case where only one eigenvalue À (and of course its conjugate À when it 
ex ex 

is nonreal) having multiplicity one, crosses the unit circle at ex= 0 : this is 

( 1 ) 
called a codimension one local bifurcation There are thus three cases : 

if À = +1 , one gets a saddle node Cor fQJQ) bifurcation; if À = -1 , a f.JjQ 
0 0 

bifurcation, and if À is nonreal, a Hopf bifurcation. 
0 

m 
It turns out that although the dimension of the ambient space R may be 

large, all the recurrent behaviour associated with a local bifurcation occurs 

necessarily in an invariant surface (manifold) that has a dimension equal to 

the number of eigenvalues that cross simultaneously the unit circle at ex= 0 . 

The principle of such a drastic reduction of the dimension of the problem will 

be shown to be a consequence of the theory of local center manifolds in section 

C.5. This remarkable result enables us ta study the saddle node and the flip 

bifurcations directly for difference equations on a onedimensional curve, or 

equivalently on the real line. On the other hand, a Hopf bifurcation may be 

2 
analysed directly in R , since then the (nonreal) eigenvalue À and its 

ex 

conjugate À have modulus 1 at the point of bifurcation ex= 0 • 
ex 

Remark C.1.1. We describe now a frequently encountered situation, and show how 

it can generate the formulation described in the text. Assume, as in the 
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introduction of Appendix B, that the successive states y of a g1ven physical 

or social system must satisfy 

< C. 1 > F(y ,Y , ••• ,y ,a)= 0 
n+1 n n-N 

where y is a vector of. RP , ais a real number indexing some characteristics of 

r pCN+2)+1 p 
the system, and F 1s a C map from an open set of R into R . Let y be 

a stationary state for a= 0 , 1. e. 
p 

a vector of R such that F(y, ••• ,y,0) = 0 , 

and assume that the Jacobian matrix of the map y~ F(y,y, ••• ,y,0) is invertible 

at y= y. From the lmplicit Function Theorern, there are open neighbourhoods V 

pCN+1)+1 p r 
of (y, .•. ,y,0) in R , W of y in R , and a unique C map H : V~ W 

such that (y , ..• ,y ,a) satisfies CC.1), with (y , ••• ,y ,a} in V and y 
n+1 n-N n n-N n+1 

in W, if and only if 

CC.2> y = HCy , ••. ,y ,a> 
n+1 n n-N 

To get the formulation of the text, one considers the variable 

x = (y , .•• ,y } , and the map G that associates to every (x ,a) in V the 
n n n-N n 

vector x = (y ,Y , ••• ,y ) with y given by CC.2). One may restrict V 
n+1 n+1 n n-N+1 

p(N+1) 
to be the product of an open neighbourhood U of (y, ..• ,y) in R , and of 

an open interval I containing Oin R . Then G(x,a) is defined on U x I ; in 

other words, each map G = GC.,a) is well defined for each admissible a, on 
a 

the open set U , which is independent of the parameter a. 

We remark that x = (y, ••• ,y) is a fixed point for a= 0 , i.e. 

G(x,0) - x = 0 . This fixed point may of course be translated to the origin 

through a linear change of variable. In fact, as noted in the text, one often 
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requires that GCO,a) = G CO) = 0 for all admissible a. We describe now a 
a 

procedure that leads to such a formulation. 

Assume that the Jacobian matrix D GCx,0) has no eigenvalue equal to 1. 
X 

Then, again from the lmplicjt Function Theorem, the fixed point ·is bound to 

persist for small values of a. That is, the eQuation 

CC.3> x - GCx,a) = 0 

can be solved uniQuely in x near Cx,0) . Specifically, there are open 
pCN+ 1) 

neighbourhoods of a= 0 in Rand of x in R - which we may take, since we 

r 
are interested in local bifurcations, to be I and U respectively - and a C map 

from I to U , i.e. a-+ x ,such that CC.3) is satisfied on U x I if and only if 
IX 

pCN+1) 
x = x • Translating x to the origin of R is achieved by making the 

a a 

change of variable z = x - x , for each admissible a , which yields the 
IX 

* equivalent family G Cz,a) = GCz + x , a) - x . One has then indeed 
IX a 

* G (0,IX) = 0 for alla. By continuity of the map a-+ x , we are sure that each 
IX 

* * * map G = G (.,a) is well defined on a small open ball U centered at O in 
a 

pCN+1) 
R , for IIXI < o , if o is small enough. Restricting attention to the 

* * pCN+t) 
family G : U -+ R , 1 a 1 < o , yie lds the desired formulation. 

~emark C~~.2. It should be emphasised that the results of this appendix apply 
.. n•• '-' 

also to the study of the local bifurcations of a family of difference 

eQuations, near a periodic orbit. Consider a family of difference equations in 

m . 
R given by the maps F , each being defined on a given open set, and suppose 

a 

that the origin x = 0 is a fixed point of the n-th iterate of F , i.e. 
IX 

FnCO) = 0 for some n > 1, with Fj(O) -1 0 for j = 1, ... ,n-1, for all 
a IX 
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admissible a. Then x = 0 is a periodic point, with period n , the 

2 n-1 
corresponding periodic orbit being O , F CO},F (0}, ... ,F (0) , for each a 

a a a 

(again this simply means that there is a family of periodic orbits, and that 

one of the periodic points on the orbits has been translated to the origin}. 

All the results ·of this appendix can then be transposed to the case at hand by 

n 
considering the family G = F 

a a 

C.2. The saddle node bifurcation 

We look first at the case of a one-parameter family of difference 

equations on the real line 

x = G(x ,a} _ G (x} 
n+1 n a n 

r 
defined by the C map G: U x I ~ R , where U and· I are open intervals of the 

real line containing O • In that case, for each value of the parameter a, the 

trajectories generated by the map G are easily visualised with the help of its 
a 

graph, in the plane Cx ,x }, as shown in Fig. C.1. A fixed point xis then 
n n+1 

described as a point of intersection of the graph of G with the 45° line, and 
a 

the trajectory associated with an initial condition x is generated by follo­
o 

wing the arrows as in the Figure. A fixed point x of G is then asymptotically 
a 

stable if 1:: Cx,a} 1 < 1 , unstable if 1:: Cx,a} 1 > 1 • 

Fig. C.1 

Assume that the origin is a fixed point for a= 0 , i.e. GC0,0} = 0 , 

3G 
and that - C0,0) = + t • A saddle node bifurcation will obtain if we suppose 

ax 
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2 
ôG ô G 

the "generic" conditions (0,0) "0 and - (0,0) "0 (we need accordingly 
ôa 2 

ôx 
r > 2) • 

= 

Fig. C.2.a pictures what happens to the graphs of the maps G for a and 
a 

2 
ôG ô G 

x sma 11, in the case where (0,0) > 0 and - (0,0) > 0 . If a < 0 G has 
ôa 2 a 

ôx 

two fixed points near O . The one on the left is asymptotically stable, the 

other is unstable. For a= 0 , the origin is stable from the left, unstable 

from the right. If a> 0 , G has no fixed point near O • Thus in a saddle node 
a 

bifurcation, two fixed points having opposite stability properties coalesce ta 

the origin, and disappear. Fig. C.2.b, which represents the qualitative 

features of this bifurcation for a and x small, is called a bifurcation 

diagram. The curve on the left describes the two branches of fixed points. 

Arrows show where the discrete orbits generated by G go, for a given a . 
a 

Fig. C.2.a Fig. C.2.b 

Proposition C.2.1. (Saddle node bifurcation). Let G : U x I ~ R define a one-
,__. r:....t .._,,.,, a~ 

r 
parameter family of maps, where G ~ C with r > 2 , and U , I are open 

= 
intervals of the real line containing O . Assume 

2 
ôG ô G ôG 

(1) GC0,0) = 0 (2) (0,0) = 
ÔX 

(3) (0,0) > 0 
2 

(4) (0,0) > 0. 
ôa 

ôx 

Then there are a < 0 < a and E > 0 such that 
1 2 

{i) lf a
1 

<a< 0 , then Ga= G(. ,a) has two fixed points x
1
a < 0 < x

2
a 

in (-E,d • The fixed point x is asymptotically stable, the other is 
1a 

unstable. 
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(ii) lf O < n < n then G has no fixed point in (-c,c) • 
2 

It can be shown further that the curve on Fig. C.2.b describing the two 

branches of fixed points, i.e. the union of the sets <x ,x ) for n < n < 0 , 
1n 2n 1 = 

r-1 
is indeed a C onedimensional manifold that is tangent to the vertical axis 

at X = 0 , tt = 0 . 
oG 

Of course, the case (0,0) < 0 is identical to the above after the 
Ôtt 

change of parameter n ~ -n • The reader will easily figure out what is the 

bifurcation diagram when inequality (3) is reversed : it amounts to changing 

the roles of positive and negative values of n, and reversing the arrows in 

Fig. C.2.b. 

Transcritical bifurcation 

The foregoing bifurcati9n described the "generic" situation. In some · 

cases, however, the class of maps under consideration may be restricted, and a 

different bifurcation may occur. A common restriction is that the fixed point 

should persist, or equivalently, after a suitable n-dependent change of 

variables that translates the fixed point to the origin, that O should be a 

fixed point for all values of the parameter. In that case, one obtains a 

transcritical bifurcation. 

Consider a family of maps defined by G(x,n) as above, with 

ôG 
(0,0) = +1 .. We require here that G(O,n) = 0 for all n, and not only for 

ôx 

ôG 
n = 0 (this implies (0,0) = 0 , a violation of condition (4) of Proposition 

Ôtt 

C.2.1), but keep the "generic" assumption 

2 
ô G 

2 ox 
(0,0) -;. 0 . In order to get 
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ôG 
actually a 'bifurcation, we must specify that (0,a) goes through +1 when a 

ôx 
2 

ô G 
passes O , that is (0,0) * 0 

ôxôa 

Fig. C.3.a describes what happens to the graphs of G near O for a 

2 2 
ô G ô G 

small, when (0,0) > 0 and - (0,0) > 0 . If a< 0 , the origin is 
2 ôxôa ax 

asymptotically stable, but there is another fixed point x > 0 near O, which 
1a 

is unstable. If a> 0 , the origin is unstable, and there exists another fixed 

point x < 0 n~ar O , which is asymptotically stable. Thus in a transcritical 
1a 

bifurcation, there are two fixed points that exchange stability at the point of 

bifurcation. The corresponding bifurcation diagram is given in Fig. C.3.b. 

Fig. C.3.a Fig. C.3.b 

Proposition C.2.2. (Transcritical bifurcation). Let G : U x I ~ R define a one-

r 
par'ameter fami ly of maps, where G is C with r > 2 , and U 

= 
intervals of the real line containing O . Assume 

(1) G(O,a) = 0 for alla 
ôG 

(0,0) = 
ÔX 

(3) 

Then there are a 
1 

< 0 < a
2 

anq_ s .> 0 such that 

2 
ô G 

2 ax 
(0,0) > 0 

I are open 

2 a G 
(0,0) > 0 • 

ôxôa 

(i) lf a
1 

<a< 0 , Ga has two fixed points, 0 and x
1
a > 0 in (-s,t) • 

The origin is asymptoticallY stable. the other fixed point is unstable. 

(ii) lf O <a< a
2 

, Ga has two fixed points, 0 and x
1
a < 0 io. (-t,t) 

The origin is unstable. the other fixed point is asymptotically stable. 

It can be shown furthermore that each branch of fixed points in Fig. 
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C.3.b, i.e. the union of all fixed points x for a <a< 0 , or for 
la 1 

r-1 
0 <a< a , is a C one dimensional manifold. Here again, the case 

2 
2 a G 

(0,0) < 0 is handled by making the change of parameter a~ -a. The reader 
axaa 
will also figure out easily the bifurcation diagram when the inequality (3) is 

reversed : it amounts, here also, to changing the roles of positive and 

negative values of a , and reversing the arrows in Fig. C.3.b. 

Pitchfork bifurcation 

Another interesting, "nongeneric" case arises when one assumes 

2 
ô G 3 
- (0,0) - 0 in the foregoing proposition. Let G be C and suppose that the 

2 
ÔX 

third derivative, 

bifurcation. 

Fig. C.4.a 

for a sma 11, when 

3 
ô G 

i.e. - (0,0) , differs from O • One gets then a pitchfork 
3 

ôx 

describes what happens to the graphs of G near the origin 
a 

3 
ô G 
- (0,0) < 0 . For a= 0 , the graph of G has an inflexion 

3 a 
ÔX 

point at x = 0 , and the origin is asymptotically stable. If a< 0 , G has a 
a 

unique fixed point, at x = 0 , near the origin, and it is asymptotically 

stable. If a> 0 , G has three fixed points near O . The origin is an unstable 
a 

fixed point, but the two others are asymptotically stable. One says then that 

the family G undergoes a supercritical pitchfork bifurcation : the fixed point 
a 

x = 0 loses its stability as a goes through O , to give rise to a pair of 

stable fixed points. The corresponding bifurcation diagram is described in 

Fig. C.4.b. 

Fig. C.4.a Fig. C.4.b 
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Proposition C.2.3. (Supercritical pitchfork bifurcation). Let G U x I ~ R be 

r 
2 

ô G 
as in Proposition C.2.2, except that G ll C with r > 3 , - (0,0) = 0 and 

2 

3 
ô G 

= 
ÔX 

3 
ôx 

(0,0) < 0 . Then there are a 
1 

< 0 < a and E > 0 such that 
2-

(i) lf o:
1 

<a~ 0 , then Ga has a unique fixed point, x = 0 , in (-E,t). 

It is asvmptoticallv stable. 

(ii) lf O <a< a
2 

, then G has three fixed points in (-t,t) • The 

origin is an unstable fixed point, the two others, x < 0 < x , are 
1a 2a 

asvmptoticallv stable. 

Here again, the two branches of fixed points in Fig.C.4.b, i.e. the 

r-1 
union of the sets <x ,x > for O <a< a , is a C onedimensional manifold 

.1 a 2a 2 
2 

ô G 
that is tangent to x-axis at x = 0, a= 0 . The case (0,0) < 0 is 

ôxôa 

identical to the above after the change of parameter 

interesting modification arises when considering the 

o: ~ -a A more 

3 
ô G 

case - (0,0) > 0 , which 
3 

ôx 

yields a socalled subcritical pitchfork bifurcation. What happens qualitatively 

is described in Fig. C.5.a, and the corresponding bifurcation diagram is given 

in Fig. C.5.b. At the bifurcation point a= 0 , the graph of G has an 
a 

inflexion point at x = 0 as before, but the origin is now unstable (whereas it 

was stable for o: = 0 in the case of a supercritical bifurcation). Then for 

a< 0 , there are three fixed points near the origin, but only x = 0 is 

asymptotically stable. For o: > 0 , the origin is the unique fixed point near 

x = 0 , and it is unstable. 
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Fig. Ll.& fig. C.5.b 

Remark C.2.4. The reader will easily verify that if the family G undergoes a 
--~ 0: 

subcritical pitchfork bifurcation when o: goes through O from below, then the 

-1 
family of its local inverses G undergoes a supercritical bifurcation when a 

a 

goes through O from above. The family of local inverses is defined as follows. 

ôG 
Since - (0,0) i O , from the Implicit Function Theorem, the equation 

ÔX 

G(x,a) - y= 0 can be solved uniquely in x for x , a , y small, to yield 

x = F(y,o:) where F may assumed to be defined on V x J , with V , J being two 

open intervals containing O • Then for every a in J F = F<.,o:) is indeed a 
a 

local inverse of G = G(.,o:) , and the family F undergoes a supercritical 
0: 0: 

pitchfork bifurcation when o: goes through O from above. 

Remark C.2.5. It is clear that the qualitative features of the local 
~ 

bifurcations discussed here are preserved if one makes a change of parameter 

a~ ~(a) and an a-dependent change of variable x ~ h(x,o:) , where ~ and h(.,a) 

are homeomorphisms. It can be shown that the converse result holds. For 

instance, two bifurcating families satisfying the assumptions of Proposition 

C.2. 1 are locally topologically conjugate : they are the same, up to a change 

of parameter and a change of variable as above, at least sufficiently near 

a= 0 , x = 0 . Similar statements hold for transcritical or pitchfork 

bifurcations. 
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Finally, it should be noted that the bifurcations presented here are 

(locally) structurally stable, i.e. the qualitative featwres of the 

bifurcation are preserved, up to a change of variable, if the maps in the 

family are slightly perturbated (in a way that depends sufficiently smoothly 

on the parameter,). By contrast, as noted earlier, such structural stability 

could D.Qi obtain, had we assumed the maps in the family to be linear. 
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C.3. The flip bifurcation 

The previous section was devoted to the case where the one-parameter 

ôG 
family of maps of the real line defined by G(x,a) was such that - (0,0) = 1. 

ôx 
ôG 

We investigate now the case where - (0,0) = -1 . To be specific, let the 
ÔX 

3 
family be defined by the map G : U x I ~Ras before, where Gis C (the need 

for continuous third derivatives will become apparent soon). Assume G(O,a) = 0 

2 
ôG ô G ( 2) 

for alla , (0,0) = -1 and -- (0,0) < 0 . The origin x = 0 is a fixed 
ôx ôaôx 

point of every G , and the slope of the graph of G at the origin, decreases 
a a 

and passes through -1 as a goes through O from below. The family G undergoes 
a 

then a flip bifurcation. 

The orbits of G near the origin oscillate more and more around the 
a 

fixed point x = 0 , when a varies from negative to positive values. If all the 

maps in the family G were linear, then these oscillating trajectories would 
a 

converge to O for a< 0 , and diverge to infinity for a> 0 , while every x * 0 

would be a periodic point of period two for a= 0 , since one would have then 

G (x) = - x for all x • One should thus expect a cycle of period two to be part 
0 

of the story in the more general case of nonlinear maps, as considered here. 

The most efficient way to discover an orbit of period two of G is to 
a 

2 
look at its second iterate, G = G oG , which is well defined near x = 0 

a a a 
2 

Indeed, a cycle of period two for G is characterized by a fixed point of G 
a a 

that differs from O • 

2 2 
Let us write G (x) as G (x,a) . Since 

a 

2 
G (x,a) = G(G(x,a),a) 
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2 
one has clearly G (0,a) = 0 for alla , and one gets from the chain rule of 

differentiation 

2 
aG 
ax 

(0,0) = +1 

2 2 a G 
(0,0) > 0 

ôxôa 

3 2 
ô G 

2 2 
ô G 
-- (0,0) = 0 • 

2 
ôx 

If we suppose the "generic" condition -- (0,0) ~ 0 , we see that the fami]Y 
3 

ôx 

2 (3) 
G undergoes a pitchfork bifurcation at a= 0 

a 

3 2 
ô G 

If -- (0,0) < 0 , the 
3 

ÔX 

2 
bifurcation is supercritical, and what happens to the family G 1s 

a 

qualitatively depicted in Fig. C.4. For a< 0 , there 1s no cycle of period two 

near x = 0 , and the origin is a stable fixed point. ~hen a> 0 , the origin 

becomes unstable, there is an orbit of period two near x = 0 , and this orbit 

is asymptotically stable (since a cycle of period two is characterized by a 

2 2 
fixed point x of G asymptotic stability is defined by using G , and is thus 

guaranteed when 

a 

2 
ôG 

a 

ôx 

a 

<x> < 1). Therefore, in a supercritical flip bifurcation, 

a stable fixed point becomes unstable, and gives rise to a stable orbit of 

period 2. For this reason, the flip bifurcation is sometimes called a period 

doulling (or subharmonic) bifurcation. 

The corresponding bifurcation diagram for the family G itself is 
a 

represented in Fig. C.6. The curve there describes the evolution of the two 

points on the orbit of period 2 when the parameter a varies. In Fig. C.7.a 

and b, the graphs of G are represented, as well as the trajectories they 
a 

generate near the origin, for a< 0 and a> 0 respectively. 
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Fig C.6 

Fiq. C.7 .a Fig. C.7.b 

The analogue of Proposition C.2.3 becomes here 

Proposition C.3.1 (Supercritical flip bifurcation). Let G : U x I ~ R define a 
• .....-., •~a n • 

r 
one-parameter familv of maps, where Gis C , with r > 3 , and U , I 

= 
are open intervals containing O . Assume 

3 2 

(1) G(O,o.) 
ôG 

= 0 for all o.; (2) -(0,0) 
ÔX 

2 
ô G 

= -1 ; { 3) --( 0 1 0) < 0; ( 4) 
ôxôo. 

a G 
--(010)<0. 

3 
ÔX 

Then, t.here are o. < 0 < o. and € > 0 such that 
1 2-

(i) If o. < o. < 0 , then G has a unigue fixed point at the origin. and 
-·1 = o. 

no orbit of period two in (-t,d . The fixed Qoint is asvmptoticallv stable. 

( i i) lf O < o. < o. , then G has a unique fixed point at the origin. ·and 
2 o. 

a unique orbit of perioq two in (-t,t) • The fixed point is unstable. and the 

orbit of period two is asvmptoticallv stable. 

In the same way as for the pitchfork bifurcation, the union of the 

r-1 
period two points for O <o.< o. in Fig. C.6, is a C onedimensional manifold 

= 2 

that is tangent to the x-axis at x = 0 , o.= 0 . 

3 2 a G 
When -- (0,0) > 0 , the 

3 
ôx 

2 
bifurcation is subcritical, and what happens to the family G is qualitatively 

o. 

described in Fig. C.5. The basic difference with the supercritical case is that 

the origin x = 0 is now unstable when o.= 0 , while it was stable in the case 

of supercritical bifurcation. Thus in a subcritical flip bifurcation, an 
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unstable orbit of period two coalesces with a stable fixed point at a= 0 , to 

leave an unstable fixed point. The corresponding bifurcation diagram for the 

family G is given in Fig. C.B. Here again, the two branches of the curve 
a 

represent the evolution of the two points of the orbit of period two. What 

happens to the graphs of the family G and to the trajectories they generate 
a 

near the fixed point x = 0 is described in Fig. C.9.a and b, for a< 0 and 

a > 0 . 

Fig. C.8 

Fig. C.9.a Fig. C.9.b 

Proposition C.3.2 (Subcritical flip bifurcation). Replace the ineguality (4) .1.o ....... 
Proposition C.3.1 

such that 

3 2 
o G 

by -- (0,0) 
3 

ôx 

> 0 . Then there exista 
1 

< 0 < a and E > 0 
2-

(i) If a <a< 0 , then G has a unique fixed point at the origin and a 
- 1 C1 

uniaue orbit of period two in (-t,t) . The fixed point is asymptotically 

stable, the orbit of period two is unstable. 

(ii) lf O <a< a , then G has a unique fixed point at the origin and 
= 2 

no orbit of period two in (-t,t) The fixed point is unstable. 

3 
Remark C.3.3. The Schwarzian derivative SG of a C map G U ~ R where U is an - ,,... 

open interval of the real line, is defined as 

SG (X) = 
G" '(x) 

G' ( x) 

3 

2 
[ 

G''(x)]2 
G' ( x) 

for every x such that G'(x) t O . It is not difficult to verify that for the 
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above family G , one has 
ex 

ôG 

3 2 a G 
3 ax 

(0,0) = 

3 2 
ô G 

- 2 

3 a G 
- (0 0) - 3 

3 ' 
ax 

2 a G 
- (0,0) 

2 ax 

and since (0,0) = -1 , (0,0) = 2 SG (0) . It follows that condition (4) 
ôx 3 0 

ôx 

in Proposition C.3.1 may be expressed as : the Schwarzian derivative SG (x) .i.â 
ex 

negative at x = 0 at the point of bifurcation ex= 0 . Maps of the real line 

having globally a negative Schwarzian derivative have nice global properties, 

as we shall see in Appendix D , and their global bifurcations are reasonably 

well understood. The reason for this should be apparent from the preceding 

analysis : for such maps, a flip bifurcation is necessarily supercritical. 

Remark C.3.4. As for the saddle mode bifurcation, .two families undergoing a 
,. .,.,, ~ 
supercritical (or subcritical) flip bifurcation as in Proposition C.3.1 (or 

C.3.2) can be deduced from each other through a change of parameter ex~ ~(ex), 

and an ex-dependent change of variable x ~ h(x,exl where ~ and h(.,exl are 

homeomorphisms. Similarly, the qualitative features of a flip bifurcation are 

(locally) structurally stable, up to such a change of variable. Here again, one 

could not get such a structural stability if the maps were linear. 

C.4. The Hopf bifurcation 

form 
We consider now a one-parameter family of difference equations of the 

x = G(x ,o:) - G (x l 
n+1 n ex n 

r 2 
defined by the C map G : U x I ~ R where U is an open neighboùrhood of the 
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2 
origin of R , and I is an open interval of the real line containing O . We 

assume that the origin is a fixed point for all admissible values of the 

parameter, i.e. G(O,a) = 0 for alla. We suppose further that for each a , the 

Jacobian matrix D G(O,a) has a pair of nonreal, conjugate eigenvalues À(a) and 
X 

À(a) , with À(a) = p(a) [cos8(a) + i sin8(a)J , p(a) ~ 0 and 8(a) in (0,v) . 

r-1 
The modulus p{a) and the argument 8(a) depend then in a C fashion on the 

parameter. In order to get a bifurcation, we assume that r > 2 and that the 
= 

eigenvalues pass out of the unit circle in the complex plane as a goes through 

dp 
0 , i.e. p(O) = 1 and -(0) > 0 . Then the origin x = 0 is asymptotically 

da 

stable for a< 0 , unstable for a> 0 : there is a so-called Hopf bifurcation 

(4) 
at a= 0 

From Section A.1, there is for each a a change of variable x ~ h(x,a) 

which brings the Jacobian matrix D G(O,a) in its real canonical form 

B = p(a) 
a 

X 

cos8(a) - sin8(a) 

sin8(a) cos8(a) 

r-1 
the map h being linear in x and C in (x,a) . As noted in Section 8.3, the 

2 
action on R of the linear map y~ B y 1s a rotation of angle 8(a) , followed 

a 

by an homothecy of center y= 0 and ratio p(a) , see Fig. 8.1. Thus the family 

of linear maps B can be represented in polar coordinates by 
a 

(p,8) ~ (p(a) p , 8 + 8(a)) . If a< 0 , all trajectories generated by 

n 
y = B y converge to the origin, while all such trajectories diverge when 
n a o 

y * 0 for a> 0 . By contrast, for a= 0 , the map y~ B y leaves invariant 
0 0 
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every circle of the plane centered at the origin (of course, every such circle 

is generally an ellipse in the original coordinates). 

Now if the maps in the family G are actually nonlinear, they are in 
a 

fact small perturbations of the linear maps B near the origin. Thus one should 
a 

expect the appearance of anïnvariant closed curve, i.e. a one-dimensional 

manifold that is homeomorphic to a circle of the plane, near x = 0 and for a 

small. The following set of results shows that this is indeed in general the 

case. 

We first look at the case where the bifurcation is supercritical. This 

case arises when the origin is attracting for a= 0 . Then an attracting 

invariant closed curve appears for a> 0 . 

2 
Theorem C.4.1 (Supercritical Hopf bifurcation). W G : U x I ~ R defin~ a ........... ....,,..__.-.::.,..,, 

r 
one-parameter familv of maps of the plane. where G ll C with r > 6 , U ~ 

= 
. 2 

open set in R containing the origin, and I an open interval of the real line 

containing O. Assume 

(1) G(O,a) = 0 for alla; 

(2) for eaçh a , D G(O,a) has a pair of nonreal. conjugate eigenvalues À(a) 
X 

and À(a) , with À(a) = p(a) CcosB(a) + i sinB(a)J , p(a) 'I O and 8(a) .in 

( 0111") ; 

(3) p(O) 
dp 

= 1 fil!Q -(0) > 0 ; 
da 

(4) 8(0) 'I 21r/Q for Q = t ,2,3 or 4. 

r-3 
Then there is a C a-dependent change of coordinates that brings the familv 

G = G(.,a) into the polar coordinates form 
a 
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3 4 2 3 
(g,B) ~ (g(a)g - a(a)g + Q R(g,B,a) , B + B(a) + b(a) Q + Q S(g,B,a)) 

r-4 r-3 r-3 
where R(g,B,a) is C , S(g,B,a) ll C while a(a) and b(a) are C and 

r-2 
C , respectivelv. If in addition, 

(5) a(O) > 0 

then the oriqin is asymptoticallv stable for a= 0 . Furthermore. there exist 

2 
a < 0 < a and an open neighbourhood V of the oriqin in R such that 

1 2 

(i) If a <a< 0 , then G has a unique fixed point. at x = 0 , and no 
- 1 = a 

invariant closed curve in V. The oriqin is asvmptoticallv stable. 

(ii) lf O <a< a , then G has a unique fixed point, at x = 0 , fillQ.__g 
2 a 

unique closed invariant curve in V. The oriqin is unstable. while the 

invariant closed curve is asymptoticallv stable. 

The first part of the theorem states that, if one puts aside the "strong 

resonance cases B = 2w/q , q = 1 ,2,3 or 4 (these cases are exceptional 

anyway), each map G may be approximated for x small, after a suitable change 
a 

of variables, by the transformation T given in polar coordinates by 
a 

3 2 
(g,B) ~ (g(a)Q - a{a)g , B + B(a) + b(a)g ) 

If the maps G are indeed nonlinear, one should have in general a(O) t O and 
a 

b(O) t O . The transformation T is the composition of a (g-dependent) rotation 
a 

and of an homothecy. The contracting or expanding properties of the 

transformation are thus most easily analysed by looking directly at the 

associated onedimensional difference equation 



65 

3 
Q = g(a)Q a(a)g _ 1(Q ,a) , 

n+1 n n n 

* 
for Q , Q 

1 
> 0 . In particular, Q is a fixed point of 1 = 1(,,a) if and 

n n+ a a 

only if T leaves invariant the circle of the plane centered at x = 0 of radius 
a 

* * Q • Moreover, g is asymptotically stable in the dynamics generated by 1 if 
a a a 

and only if the corresponding invariant circle is asymptotically stable in the 

dynamics generated by T 
a 

It is easily seen that, if a(O) ~ 0 and if one allows negative values of 

3 
Q ' 

the fami ly 1 undergoes a Qitchfor~ bifyrcation at a = 0 . Indeed 1 is C 
a 

2 3 

and for all a 
ô1 Ô 1 

= 0 
Ô 1 

' 
1(0,a) :: 0 ' 

-(0,a) = g(a) 
' 

-(0,a) 
' 
-(0,a) = -6a(a). 

ÔQ 2 3 
ÔQ ÔQ 

Thus if aCO) > 0 ' the origin Q = 0 is asymptotically stable for a = 0 ' 
and 

the 'bifurcation is supercritical (Proposition C.2.3). What happens in that case 

to the graphs of 1 near g = 0 , for a small, is represented in Fig. C. 10.a. In 
a 

terms of the dynamics associated with the transformation T , for small a< 0 , 
a 

2 
the origin of R attracts all nearby points. For small a> 0 , the origin 

2 
becomes unstable and all small x ~ 0 in R are attracted to an invariant circle 

centered at x = 0 , of radius Q* = V{g(a) - 1)/a(a) • The last part of the 
a 

theorem states that this picture is qualitatively unchanged when one goes back 

to the original family G . The corresponding bifurcation diagram is given in 
a 

Fig. C.11. 

Fig. C.10.a Fig. C.10.b 

Fig. C. 11 
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The same line of reasoning permits to see easily what happens when 

a(O) < 0 • In that case the origin is unstable at a= 0 , and the family 1 
a 

undergoes a subcritical pitchfork bifurcation (Fig. C.10.b). In terms of the 

dynamics associated with the transformation T , for small a< 0 , ·the origin 
a 

is asymptotically stable, but there is a repelling invariant circle centered at 

x = 0 , of radius Q* = V{p{a) - 1)/a(a) . When a crosses O from below, the 
a 

repelling invariant circle coalesces to the origin and for small a> 0 , the 

fixed point x = 0 is unstable. The following result states that the picture 

remains qualitatively the same when going back to the original family G • The 
a 

corresponding bifurcation diagram is given in Fig. C.12. 

Theorem C.4.2 (Subcritical Hopf bifurcation). Assume in the preceding theorem 

that (5) is replaced by 

(5') a{O) < 0 . 

Then the origin is unstable for a= 0 . Furthermore, there exista < 0 < a 
1 2 

2 
and an open neighbourhood V of the oriqin in R such that 

(i) lf a
1 

<a< 0 , then Ga has a unique fixed point, at x = 0 , and a 

unique invariant closed curve in V . The oriqin is asymptotically stable, the 

closed curve is unstable. 

(ii) 1f O <a< a , then G has a unique fixed point. at x = 0 , and no 
= 2 a 

invariant closed curve in V. The origin is unstable. 

Fig. C.12 
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The sign of the coefficient a(O) determines whether the bifurcation is 

supercritical or subcritical. The following proposition shows how to obtain in 

principle this coefficient - although the practical computations involved are 

sometimes tedious. 

Proposition C.4.3. Under the assumptions of Theorem C.4.1, .le1 À , À be the 

conjugate nonreal eigenvalues·at a= 0 , and assume that coordinates in the 

plane have been chosen io put G in the form 
0 

[:] - [ COS8 (0) 

sinB(O) 

-sin8(0Jl (x] 
cosB(O) y + 

( 

f(x,y) l 
g{x,y) 

(5) 
Then one has 

-2 

Re [ 
{1-2A)À 

J + 
1 

1 C 11 l 2 + 1 C 021
2 

-a(O) = C C - Re{Ac 
1-À 11 20 2 21 

where 

Be = {f f + 2g ) + i { g g 2f ) 

20 XX yy xy XX yy xy 

4c = (f + f ) + i { g + g ) 

11 XX yy XX YY 

Be = (f f 2g ) + i ( g g + 2f 
02 XX yy xy XX yy xy 

16c = {f + f + g + g ) + i ( g + g f 
21 XXX xyy xxy yyy XXX xyy xxy 

) 

in which the partial derivatives of f and g are evaluated gt (x,y) = {0,0) 

Remark C.4.4. The invariant closed curve C , of which the existence is 

f 
YYY 

asserted for a> 0 in Theorem C.4.1, may be represented as the locus of all 

points of the plane that have the polar coordinates {Q{B,a),B) , where B is an 

) 



70 

arbitrary real number, g(B,a:) ~ 0 for all Band a:> 0 , and Q is periodic of 

period 2n in B , i.e. g(B + 2n,a:) = g(B,a:) . Under the assumptions of the 

r-5 
Theorem, a: can be chosen small enough so that the map Q is C for 

2 

0 <a:< a: . The union of all invariant closed curves C for a: in (0,a: ), 
2 a: 2 

together with the origin of the plane for a:= 0 , form in the bifurcation 

r-5 
diagram of Fig. C.11, a two dimensional C manifold [ that is actually 

.. k 
tangent to the x-plane at a:= 0 . This does not mean that r is C (is C for 

.. 
all k > 1) when Gis itself C , however. In such a case, one can find a: > 0 

= k 
k 

for each k > 1 such that g and thus r is C 
= 

on (0,a:) • Yet the sequence a: 
k k 

will typically tend to O as k tends +00 • The same regularity result holds for 

a:< 0 in the case of a subcritical bifurcation. 

Remark C.4~5. This remark is the analogue of Remark C.2.4 for.the case of a 

pitchfork bifurcation. One can verify that if the family G undergoes a 
a: 

subcritical Hopf bifurcation when a: goes through O from below, then the family 

-1 
of its local inverses G undergoes a supercritical bifurcation when a: goes 

a: 

through O from above. The family of local inverses is defined as follows. Since 

the eigenvalues of D G(0,0) have modulus 1 , this matrix is invertible. From 
X 

the Implicit Function Theorem, the equation G(x,a:) - y= 0 can then be solved 

uniquely in x for x,a:,y small, to yield x = F(y,a:) where F may be assumed to be 

defined on V x J , where Vis an open set of the plane containing the origin, 

and J is an open interval containing O . For every a: in J , F = F(. ,a:) is 
a: 

indeed a local inverse of G = G(.,a:) , and the family F undergoes a 

supercritical bifurcation when a: goes through O from above. 
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Remark C.4.6. As noted earlier, the condition a(O) * 0 is generally satisfied 

(is "generic") in the class of all families of nonlinear maps, with enough 

differentiability. Analysis of the case a(O) = 0 requires taking into account 

higher order terms in the approximating Taylor expansion T of the family G 
<X a 

in polar coordinates. Analogues of Theorems C.4.1 and C.4.2 are actually 

available in the case a(O) = 0 , see Iooss (1979, Chapter III, Section 2). 

The strong resonance cases 0(0) = 2n/q with q = 1 ,2,3,4, are also 

"nongeneric" in the class of all nonlinear maps. The study of what happens in 

these cases involves some difficult and unsolved problems. For more 

information, see Whitley (1983, Section 2.5), and Iooss (1979, Chapter IV). 

(6) 
Remark C.4.7 (Motion on the invariant closed curve) • Once we have 
...-, Ç PJ;u t#.Ja 

obtained an asymptotically stable invariant closed curve C in a supercritical 
a 

Hopf bifurcation (for a> 0 in Theorem C.4.1), it remains to understand the 

behaviour of the trajectories generated by the difference equation 

x = G (x) , when it is restricted to C (the results concerning a 
n+1 a n a 

supercritical bifurcation can then be transposed to the subcritical case, for 

instance by using Remark C.4.5). 

Under the assumptions of Theorem C.4.1, for small a , the map G is only 
a 

a small per-turbation, after a suitable change of variables, of the 

transformation T given in polar coordinates by 
a 

3 2 
(g,0) ~ (g(a)g - a(a)g , e + e(a) + b(a)g ) 

Thus for small a> 0 , in this system of polar coordinates, the restriction of 

G to the invariant closed curve C is a small perturbation of the restriction 
a a 
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ta the circle centered at the origin of radius g* = 'v/2g(a)-1)/a(a) , of a 
a 

* * 2 rotation R of angle B = 8(a) + b(a)(g ) 
a a a 

* 
Let us first look at the dynamics generated by R ·. If B /2u is 

a a 

rational, i.e. of the form p/q where p and q are positive integers that are 

relatively prime, every point of the circle is periodic with period q (i.e. one 

* 
goes back tait when applying q-times the rotation R ) . If 8 /2u is 

a a 

irrational, then no point of the circle is periodic : the trajectory generated 

by an arbitrary point of the circle is dense in that circle. 

Knowledge of the properties of the restriction of the approximating 

* 
rotation R ta the invariant circle of radius g is not enough, unfortunately, 

a a 

ta state the properties of the original family G restricted ta the invariant 
a 

closed curves C . The reason is that such rotations R are not structurally 
a a 

* 
stable : the fact that B /2u is rational or irrational can be altered by a 

a 

small perturbation of the map. It can be shown nevertheless that, as far as the 

behaviour of the restriction of G to C is concerned, the typical (i.e. 
a a 

00 

"generic") picture is the following one. Assuming that G is C , and if the 

parameter a appearing in Theorem C.4.1 is chosen small enough 
2 

1. there is a set A that is open and dense io (0,a) such that for every 
2 

a la A, the map G has two families of periodic orbits, all having the sarne 
a 

Ca-dependent) period. on the invariant closed curve C One family is stable, 
a 

the other unstable. 

The best way to visualise what happens is lo look at the path 

followed in the complex plane by the eigenvalue À(a) of the Jacobian matrix 
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D GCO,a) , as shown in Fig. C.13.a. Consider a complex number of the form 
X 

case+ i sine represented by the point Mon the unit circle, with e = 2~p/q , 

where p and q are positive integers that are relatively prime, and q ~ 1 ,2,3,4 

(again, we put aside the strong resonance cases). Then there is a narrow 

cusped open region, near the unit circle, that lies between two curves passing 

through M and having a common tangent there as in the hatched region of Fig. 

C.13.a, with the following property. Suppose that the point representing the 

eigenvalue >..(a) 1 ies in this narrow "tangue" for ex > 0 in some interval 

(a' ,a'') . Then for every ex in that interval, G has two families of periodic 
a 

orbits, of period q , on the invariant closed curve C . The periodic orbits of 
a 

one family are unstable, while the periodic orbits of the other family are 

asymptotically stable (in the dynamics generated by the restriction of G 
a 

to C ) . The unstable and stable periodic orbits "alternate" on the invariant 
Cl 

closed curve ; an example of such a pattern is given in Fig. C. 13.b, with q = 6 

(the arrows indicate stability or unstability; they are drawn as if the 

trajectories were continuous, the interpretation in discrete time should be 

apparent). 

Fig C.13.a Fig. C.13.b 

Since rational numbers are dense in the real line, the path followed by 

the eigenvalue >..(ex) in the complex plane will cross infinitely many such 

distinct little tongues. The union A of the corresponding intervals Ca' ,a'') of 

the parameter will be open and dense in (0,cx) if a is small enough. Thus for 
2 2 

most values of a in (0,a) , the asymptotic behaviour of the trajectories 
2 
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generated by G on the invariant closed curve will be periodic. It should be 
a 

remarked that many of the periods will be large, i.e. will correspond to a 

large Q. 

2. Although the above mentioned set A js open and dense in <O,a > , it.s. 
2 

complement in that interval is not neg]iqible from a measure theoretic 

viewpoint. Indeed, the set Bof parameters in <O,a) such that the restriction 
2 

of G to the invariant closed curve C is topologically conjugate to a rotation 
a a 

of angle 8 of the unit circle of the plane, with 8/2n irrational, has positive 

Lebesgue measure m(B) > 0 . In that case, any orbit generated by the 

restriction of G to C is aperiodic : it is dense in C . In fact, the 
a a a 

relative frequency of such aperiodic behaviour is high for a> 0 small : the 

ratio m(B)/a tends to 1 when a goes to O • 
2 2 

Remark C.4.8. It should be clear from the previous remark that the qualitative 

features of a Hopf bifurcation cannot be st~ucturally stable. After a 

perturbation, the path followed by the eigenvalue À(a) would cross the unit 

circle at a different point, and thus meet different little tongues as in Fig. 

C.13.a. The two families could not be conjugate. 

C.5. The center manifold reduction 
,- - ....... A:::::::uw 

m 
Local bifurcations appear to be hard to analyse in R , if mis large. 

Fortunately, as mentioned in Section C.1, an application of the theory of 

center manifolds permits to reduce the dimension of the problem to the number 

of eigenvalues the modulus of which goes through in the bifurcating family. 

We exploited that fact in the previous sections by looking at the saddle node 

or the flip bifurcations directly for maps of the real line, and by analysing 
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the Hopf bif~rcation directly in the plane. We show now precisely how to 

implement such a reduction of the dimension of the problem. 

Consider a family of difference equations defined by the map 

m m 
G : U x I ~ R where U is an open set of R containing the origin, I is an 

r 
open interval of the real line containing O , and Gis C , with r > 2 We 

= 
m 

assume that the origin of R is a fixed point of each map G = G(.,a) of the 
a 

(7) 
family, i.e. G(O,a) = 0 for all a We let A be the Jacobian matrix 

a 

D G(O,a) , and assume that A is invertible and has some eigenvalues of modulus 
X 0 

1 . The family will thus generally undergo a local bifurcation (near the 

origin) at a= 0 • We assume furthermore that a linear change of variables has 

brought A in its real canonical form, i.e. A = diag<C,B> , in which C 
0 0 

. C 
correspond to the center space F of A , and B to the direct sum of the stable 

0 
s u 

and unstable spaces F and F of A . We shall write accordingly x = (~,n) , 

C S U 
where ~ belongs to F and n to F + F 

It is convenient here to consider that the map G defines a single 

m+1 
difference equation in R by 

a = a 
n+1 n 

x = G(x ,a) 
n+1 n n 

The trajectory generated by this difference equation, that corresponds to the 

initial condition (a,x ) , or more precisely its projection on the x-space, 
0 

coïncides then to the orbit of x generated by the map G Analysing 
o a 

the local bifurcation of the family G near x = 0 , for a small, is thus 
a 

m+1 
equivalent to studying the local properties of the map H : I x U ~ R 

defined by 

(a,x)-+ (a,G(x,a)) 
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near its fixed point a= 0 , x = 0 . One can then apply the local analysis 

developed in Section 8.5. 

Since G(O,a) = 0 for alla the partial derivatives of G with respect 

to a, evaluated at x = 0 , a= 0 are equal to zero. Thus the Jacobian matrix 

DHC0,0) is block diagonal and given by 

DH CO, 0) = 
[ 1 C D l 

s 
The stable and unstable spaces of DH(0,0) are thus equal to <0> x F and 

U C 
<0) x F respectively, while its center space is R x F 

m+1 
According to Theorem 8.5.1, there is a neighbourhood V of (0,0) in R 

C 
such that H has a local center manifold W in V. Such a center manifold is 

r-1 
C 

(0, 0) 
C 

and has the same dimension as the center space of DH(0,0) , i.e. R x F 

to which it is tangent at a= 0 l; = 0 , n = 0 • More importantly, it is 

n 
locally attracting : if (a,x) and H (a,x) are in V for all n > 1 , then the 

n C 
distance between H (a,x) and W tends to O as n ~ +œ. This fact implies 

(0,0) 

that any recurrent behaviour that may appear, or disappear, in the bifurcating 

family, such as fixed points. periodic orbits, invariant closed curves. must 

C 
lie in a center manifold W . This result is the key ta the reduction of 

( 0, 0 l 

the dimension of the problem. 

Ta be specific, assume that the difference equation associated with H , 

has the following representation 

a = a 
n+1 n 

l; =Cl; + f(l; ,n ,a) 
n+ 1 n n n n 



78 

n = B n + g(t ,n ,a) 
n+1 n n n n 

in which f and gare defined for (t,n) EU a E I . Of course the last two 

lines stand for x = G(x ,a) . So, by construction, the functions f and g 
n+1 n n 

r 
are C , r > 2 , f(0,0,a) = 0 and g(0,0,a) = 0 for alla , and the first 

= 
partial derivatives off and g with respect to t and n , vanish at t = 0 , 

n = 0 , a = 0 • 

C 
In this system of coordinates, a local center manifold W 

( 0, 0) 
can be 

r-1 
represented as the graph of a C function n = -y(a,O , defined on a small 

open neighbourhood of a= 0 t = 0 which we may take of the form J x V , where 

J is an open interval of the real line containing a= 0 , and V an open set in 

C 
F containing t = 0 • 8y definition, 'Y and its first partial derivatives vanish 

at (0,0) . According to the analysis of Section 8.5, the motion on the local 

center manifold near a= 0 , x = 0 , is governed by 'the difference equation, 

for Ca ,t ) in J x V 
n n 

a = a 
n+1 n 

t = C t + f(t ,-y(a ,t ),a) ~ r(t ,a) , 
n+ 1 n n n n n n n 

with n = -y(a ,t ) for all n > 0 . In fact (îheorem 8.5.3), the map H iâ. 
n n n = 

locallY topologicallv coniugate to 

s u 
a-+ o: , t ... r<t,a) , n-+ 8n , (a,0 in J x V , n in F + F 

m 
Studying the local bifurcation of the family G in R amounts to 

a 

analysing the local bifurcation of the family r = r(.,o:) 
a 

C 
V -+ F • It is 

possible to show that -y(a,0) = 0 , in which case r(O,o:) = 0 , for alla in J , 

see Iooss {1979, Chapter V, Section 3). One has moreover D r(0,0) = C , and C 
t 

is a matrix the eigenvalues of which have all modulus one. The dimension of the 
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bifurcation problern is indeed reduced to the nurnber of eigenvalues of the 

Jacobian rnatrix D G(O,ex) that have rnodulus one at ex= 0 . In particular, if 
X 

only a simple real eigenvalue, or only a pair of simple nonreal conjugate 

eigenvalues, have rnodulus one at ex= 0 , one may try and apply to the family 

r , the bifurcation theorems presented in the preceding three sections, on the 
ex rn 

real line or in the plane. A precise representation in the arnbient space R 

of the bifurcating fixed points, periodic orbits or invariant closed curves, 

will then be obtained through the transformation~~ (~,1(ex,~)) , for each ex. 

m 
Stability or unstability in R , in the dynarnics generated by G , will then be 

ex 

deduced from the fact, already mentioned, that His locally topologically 

conjugate to ex~ ex , ~ ~ rc~,ex) , n ~ Bn . In particular, if all eigenvalues À 

C 

of the matrix 8 satisfy IÀI < 1 , and if an abject K in F Cfixed point, 

periodic orbit, etc ... ) has been found to be asymptotically stable in the 

C m 
dynamics generated in F by r ~ the image of Kin R after the transformation 

ex 
m 

~ ~ (~,1(ex,~)) , is also asymptotically stable in the dynamics generated in R 

by G 

Remark C.5.1. In practice, in order to apply the bifurcation theorems of the 
,-,, n ""~ 

preceding sections, one needs only to know the partial derivatives of rc~,ex) , 

and thus of -y(ex,0, at ex= 0, ~ = 0. One can compute thern-by using the 

identification technique described in Remark 8.5.4. 

Remark C.5.2. We already noted that -y(cx,0) = 0 for all ex in J . For every 
~Ul u ... 

m 
the graph in R 

C 

of 1Ca,.) represents the section of W 
CO, 0) 

m+1 
in R by the 

-
ex ' 

hyperplane of equation ex= a; it is therefore a local invariant manifold W_ 
ex 
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C C 
of G_ near (~.n) = 0, having the same dimension as F . Since W is locally 

a (0,0) 
m+1 

attracting in the dynamics generated in R by the map H , the manifold W is 
a 

m 
also locally attracting in the dynamics generated in R by G for each a. 

a 

Since by construction D y(0,0) = 0 W is actually a local center manifold of 
~ , 0 

G . Under some regularity conditions, it can be shown that for a t O , the 
0 

manifold W is tangent to the generalized eigenspace of DG (0) corresponding to 
a a · 

the eigenvalues that cross the unit circle at a= 0 , see Iooss (1979, chap. 

V. 3, Lemma 3). 

The fact that local center manifolds need not be unique is not trouble­

m 
some here. Any invariant closed set that bifurcates from the origin in R for 

the family G , such as fixed points, periodic orbits or invariant closed 
a 

curves, must belong to W for each a, and this no matter.which specific choice 
a 

C 
of W was made. For a precise statement, see Iooss (1979, Chapter V.3, 

( 0, 0) 

Lemma4). 

Notes on the literature 

The presentation of the saddle node and flip bifurcations in Sections 

C.2 and C.3 is a direct transposition of Whitley (1983, Section 1.1). The 

materia1 of Section C.4 on the Hopf bifurcation is adapted from Iooss (1979, 

chap. III), Whitley (1983, Sections 2.2, 2.3 and 2.4), Guckenheimer and Holmes 

(1983, chap. 3.5). Other useful references are Carr (1981, chap. 3.4), 

Chenciner (1983, 1987), Marsden and McCraken (1976, Section 6). The material on 

the center manifold reduction is taken from Iooss (1979, Chap. V), Marsden and 

McCraken (1976, Section 2), Carr (1981, chap. 2.8), Guckenheimer and Holmes 

( 1983, chap. 3. 2) . 



FOOTNOTES TO APPENDIX C 

(1) Local bifurcations associated with several or multiples eigenvalues 

crossing the unit circle are far more difficult to handle, and at any 

(2) 

rate are "rare" (nongeneric). 

We could have assumed GC0,0) = 0 instead of G(O,a) = 0 for alla. The 

aG 
origin is then a fixed point of G = GC.,0), but since -(0,0) ; 

0 ax , the 

fixed point would persist for small a, and one would go back to the 

formulation of the text by translating it to the origin, according to 

the procedure outlined in the last part of Remark C.1.1. 

2 
(3) By continuity, we are sure that all G are well defined on a small 

a 

common open interval containing O for a small enough. Thus all 

conditions of Proposition C.2.3 are satisfied. 

(4) We could have assumed only GC0,0) = 0 instead of GCO,a) = 0 for alla. 

For then, since D GC0,0) has no eigenvalue equal to 1, the fixed point 
X 

would persist for small a, and one would translate it to the origin 

according to the procedure outlined in Remark C.1.1. 

(5) For any complex number z = x + iy , the notation Re(z) stands for the 

real part of z , i.e. Re(z) = x .. 

(6) What follows is adapted from Whitley (1983, Sections 2.3 and 2.4). See 

also Iooss {1979, chap. III.2). 

(7) Here again, this simply means that there is a persistent fixed point of 

G , that has been translated to the origin by a suitable a-dependent 
a 

change of coordinates. 



82 

D. GLOBAL BIFURCATIONS AND CHAOS 

We were interested in the preceding appendix in local bifurcations 

of a family of difference eQuations x = G (x) , i.e. Qualitative changes of 
n+1 a n 

the corresponding trajectories that can be observed in everv, however 

small, neighbourhood of a fixed point of the family, when the indexing 

parameter varies. Such Qualitative changes may of course occur only in~ 

neighbourhood of the stationary state, sometimes Quite far away from it. In 

that case, the bifurcation is global. Quite complex phenomena may then 

obtain : periodic orbits or even "chaotic" trajectories that look random 

although they are, generated by a purely deterministic system. Many of these 

"exot ic" phenomena are st i 11 poor ly understood. We sha 11 content ourse lves here 

to give a brief account of what happens in the case of one-dimensional 

nonlinear difference eQuations, and of so-called "homoclinic" bifurcations of 

diffeomorphisms of the plane. Sorne notes at the end of the appendix will permit 

the interested reader to pursue her/his own inQuiry. 

D.1. Maps of an interval 
::us r.us u 

We consider the difference eQuation 

(D.1} x = GCx) 
n+1 n 

where x 1s a real number. We are interested in trajectories generated by CD.1> 

that do not diverge to infinity, so we shall assume that G leaves invariant an 

interval Ca,bl , and consider only the restriction of G to that interval, i.e. 

G : Ca,b] ~ Ca,b]. 
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If Gis continuous, it has a fixed point in the interval. More 

generally, (0.1) may have solutions that are periodic, or display an irregular, 

"turbulent" behaviour. \.Je say that x is a gerjQdic point of period k > 1 I if X 
= 

k 
is a fixed point of the k-th iterate of G I i.e. X : G Cx) I and if k is the 

smallest integer having this property. As usua l, the iterates of Gare defined 

j j-1 
recursively through G (x) = GCG (x)) • The corresponding geriodic orbit, or 

k-1 
cycle, is then the set <x,G(x), .•• ,G (x)>. 

Existence of cycles 

Global conditions ensuring the existence of cycles are relatively easy 

to find and to verify in this simple context, when the period is small. \.Je gîve 

an example for cycles of period two and three. 

Lemma D.1.1. Assume that G : Ca,bl ~ Ca,bl is continuous. Let x in{a,b) .b..ê_a 

fixed goint. with G(x) > x for al] x .1n Ca,x>. If there exists x .1n Ca,x> ~ 
0 

2 3 
that G (x

0
> < x (r..e.fil2....t. G (x) < x ), then G has a cycle of period two (resp. 

0 0 = 0 

three). 

\.Je give a short proof in the period two case. Let x in Ca,x} be such 
0 

2 
that G (x} 

0 
2 

Since G (a) 

< x • Assume first that the end point ais nota fixed point of G. 
= 0 

2 
>a, by continuity, G has a fixed point x in Ca,x J that is not 

0 

a fixed point of G xis a periodic point with period 2. If on the other hand 

2 
G{a} = a , one has G {x) > x for x close enough to a. Then, again by 

1 1 1 
2 

continuity, G has a fixed point in Cx ,x J , which is a periodic point with 
1 0 

period 2. The proof for the period three case follows the same line. The reader 

will easily verify that the argument works for any period k that is prime. 
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Fig. D.1 represents the graph of a map G that satisfies the conditions 

of the Lemma, and that has accordingly a cycle of period two .fillQ a cycle of 

period three. The example shows that we should generally expect cycles of 

different periods to coexist. The following result characterizes the way in 

which such a coexistence may obtain. It implies in particular that a continuous 

map from an interval into itself that has a cycle of period three, as in Fig. 

D.1, has in fact cycles of every period, and can thus generate quite complex 

trajectories. 

Fig. 0.1 

Theorem D.1.2 (Sarkovskii). Consider the following ordering of the integers 

3>5 >7). .. 

> 2.3~ 2.5 > 2.7 > 
m m m 

)-2 ,3>2 .5>2 .7>··· 

If the continuous map G: Ca,bJ ~ Ca,bl has a cvcle of period k , then it has 

also a cvcle of period k' for all k' <. k . 

Stabilitv 

Finding which cycles are stable, if there are any, is an important task 

when one is faced with so many possible equilibria of the system. Stability and 

asymptotic stability were defined in appendix B for a fixed point or for any 

closed set (Remark 8.1.1). The definition applies therefore to a periodic 
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k n 
orbit (x ,x , •.• ,x ) , where G (x) = x and G (x) = x ~ x for 

0 1 k-1 0 0 0 n 0 
k 

n = 1, ... ,k-1. As a matter of fact, since x is a fixed point of G 
0 

(asymptotic) stability of the periodic orbit is equivalent to the (asymptotic) 

k 
stability of x in the difference equation associated to G (Remark B.1.2). 

0 . 

If Gis continuously differentiable, we have from the chain rule of 

differenciation 

CD.2). 

k 

k 
(G )'(x) = G'(x ) 

0 k-1 
G, ( X ) 

0 

Thus if a= <G )'(x) , the cycle is asymptotically stable when lal < 1 , 
0 

unstable when lal > 1 . In the sequel it will be useful to say that the 

periodic orbit is weak]v stable if lal < 1 . This terminology is a slig~t abuse 

of language, since when lal = 1 , the cycle may he stable or unstable depending 

k 
upon the sign of higher order derivatives of G at x , but it will turn out to 

0 

be consistent in the cases under consideration. The cycle will be said 

superstable if a= 0 ; in view of C0.2), this means that a critical point of G, 

i.e. a point x such that G'(x) = 0, belongs to the periodic orbit. Finally, 

one may remark that none of the foregoing definitions depends upon the 

particular point chosen on the periodic orbit. Indeed, we get, again from the 

chain rule of differenciation, for any element x of the cycle 
n 

k 
CG )'(x = G'Cx > ••• G'Cx > G'Cx ) ••. G'Cx > 

n n-1 0 k-1 n 

k 
= CG )'Cx) . 

0 

There is little hope to be able to say something on the stable periodic 

solutions of (0.1) if one does not make simplyfing regularity assumptions about 
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the map G , and its iterates. The first regularity assumption we shall make is 

that Gis single peaked. 

1 * 
CD.3) G i§. C and single peaked. i.e. there exists x .in Ca,b) such that 

* * * G'Cx) = 0 , with G'Cx) > 0 for x < x and G'Cx) < 0 fQr: x > x 

* 
Moreover GCx > = b . 

* * * The assumption GCx) = b involves no loss of generality whenever G(x) > x 

* 
since one can then restrict attention to the invariant interval Ca,G(x )J • The 

* 
assumption implies that G has a unique fixed point x in (x ,b) • The next 

* 
condition states that G has no fixed point in the interval (a,x ) , and that if 

the end point ais a fixed point, it is unstable. 

* CD.4> G C x) > x for a 11 x in Ca, x ) , and G' Ca) > 1 if G (a) = a . 

The assumption that Gis single peaked rules out multiple ups and downs in the 

graph of G. The curve representing this graph may still make a lot of "little 

waves" within each interval of monotony of G, and that is something we wish to 

n 
avoid, not only for G but also for the iterates G 

It turns out that the phenomenon is indeed prevented to occur if one 

assumes that G has a negative Schwarzian derivative. This is a global version 

of a condition that we already met when studying the local bifurcations of maps 

of the real line : we saw that a flip bifurcation is supercritical if, and in 

general only if, the value of the Schwarzian derivative of the map, evaluated 

at the fixed point, was negative CRemark C.3.3). If we note the Schwarzian 

3 
derivative (assuming that Gis of class C) 
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G"'Cx) 3 [ G" Cx) ]2 
SGCx) = G, (X) 2 G' Cx) 

the condition reads 

3 
CD.5) G .iâ C and SGCx) < 0 fQr ever~ x such that G'(x) ~ 0 . 

One can verify by direct computation that 

1/2 -1/2 
SG = - 2 I G' 1 c I G ' 1 l ' ' . 

So the assumption (0.5) - which we will write for short SG < 0 - means that 

-1/2 
IG'I is convex on every interval of monotony of G. It will be satisfied in 

particular when IG' 1 or LoglGï is concave on such intervals. One may note, 

incidentally, that the concavity of Gis neither necessary nor sufficient to 

guarantee SG < 0 . 

The next fact implies that assumption CD.5) rules indeed out "little 

waves" not only in the graph of G , but also in the graphs of ill its iterates. 

Lemma 0.1.3. 1) 1f SG < 0 , .t.hfil1 IG'I has no positive local minimum . 
._.,,_, n -eu,,_ 

3 
2) For anv two C macs Gand H from the real line into itse]f, 

Qne has 
2 

SCGoH)Cx) = SGCHCx))[H'(x)J + SHCx) . 

n 
Thus SG < 0 and SH < 0 imJ2..1:t SCGoH) < 0 . In particular, SG < 0 impljes SG < 0 

for al J n > 1 • 
= 

It turns out that the assumption SG < 0 achieves a lot more. Indeed, 

when Gis single peaked, i.e. satisfies assumptions CD.3) and (0.4), there 

exists at most one weakly stable cycle, as the following theorem shows. To 
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state the results most conveniently, it will be useful to say that a periodic 

orbit P attracts a point x if the set of limit points of the sequence of all 

n 
iterates G (x), as n tends to +~ , coïncides with P. 

Theorem D.1.4. Assume that G: ca,bl satisfies (0.3), CD.4) g[lg(D.5). Then 
CU ~4' ••• 

1) the mao G has at most one weaklv stable periodic orbit. This periodic 

orbit lies in the interval cGCb),bl • 

2) lf G has a weaklv stable perjodic orbit. it attracts the critical 

* point x . If in addition 

* CD.6) G"Cx) < 0, 

the weaklv stable periodic orbit attracts all points of the interval ca,bJ, 

except for a set of Lebesgue measure O • 

This result is remarkable for it shows that if we restrict attention to 

those maps that satisfy the regularity conditions (0.3) through (0.6), we are 

sure that there exists at most one weakly stable periodic orbit, even though 

there may be an infinity of cycles. When such a stable periodic orbit exists, 

it attracts actually most points of the interval. The last feature yields a 

nice practical method to discover the stable cycle when it exists. It suffices 

indeed to choose at random a point in the interval, to iterate it by using a 

computer, and to check whether the iterates converge to a periodic trajectory. 

If they do, we are sure that the limit cycle is weakly stable (if it were not, 

one would not have converged toit, if only as a result of rounding off 

errors). Since iterations have to be stopped after a finite time in practice, 

this experimental method will enable us to discover cycles that have not too 
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large a period, and that are attracting enough. Of course, this way of 

proceeding will now allow us distinguishing between the presence of a weakly 

stable cycle that has a very long period or that is very weakly attracting, and 

the absence of any stable cycle. 

The foregoing theorem can also be used to construct maps satisfying 

CD.3) through (0.5), that have no stable cycle : it suffices that the iterates 

* 
of the critical point x do not converge, or that they fall upon an unstable 

cycle. Fig. 0.2.a and b give an example of such a pattern, in which the 

iterates of the critical point hit an unstable fixed point. The maps pictured 

in these figures satisfy the conditions of Lemma 0.1.1 ; they have thus a cycle 

of period three, and therefore from Sarkovskii's theorem, cycles of every 

period. None of these cycles is stable, however, when the maps have a negative 

Schwarzian derivative. In such a case, for any initial condition that does not 

belong to a periodic orbit, the corresponding trajectory will be aperiodic no 

matter how long one waits. Maps in this category are good candidates to portray 

"turbulent" or "chaotic" behaviour. We shall go back to such maps later on when 

dealing specifically with that issue. 

Fig. D.2.a Fig. D.2.b 

Remark D.1.5. It is not difficult to verify that assumptions C0.3), (0.4) and 

C0.6) are preserved when making a change of variable of the form x ~ h(x) , 

r 
where h is a C diffeomorphism that preserves orientation, i.e. such that 

h'(x) > 0 for all x. By contrast, the condition SG < 0, as any global convexity 

assumption, is not preserved through a nonlinear change of variable. ln 

practice, one may get a map F that represents "naturally" a particular physical 
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or social phenomenon, and that does not have a negative Schwarzian derivative. 

Theorem D.1.4 applies nevertheless if one of the topological conjugates of F , 

say G , does satisfy SG < 0 . That remark applies of course also to the results 

below that use the negative Schwarzian derivative condition. 

Bifurcations 

Consider a family of maps G indexed by the real number a. When the 
a 

n 
parameter varies, the map G , or one of its iterates G , may undergo a 

a a 

bifurcation. Since we are considering here maps of the real line, the 

bifurcation may be of the saddle node type (Section C.2), or a flip bifurcation 

(Section C.3). Moreover, if each element G of the family is assumed to have a 
a 

n 
negative Schwarzian derivative, any iterate G has the same property, and every 

a 

such flip bifurcation should be supercritical, a stable cycle of period k 

becoming unstable and giving rise to a st~ble cycle of period 2k (Remark 

C.3.3). When dealing with such families, one should expect to observe a cascade 

of period doubling bifurcations, involving stable cycles, as the parameter 

varies. This is indeed the pattern one observes in numerical experiments. We 

review here some mathematical results that explain the phenomenon. 

Consider a family of maps G from Ca ,b l into itself, in which the 
a a a 

parameter a belongs to c0,11. We assume that each G is single peaked, ·i.e. 
a 

* 
satisfies assumption (D.3) with a unique critical point x , and moreover, that 

a 

a and b depend continuously on a, as well as G and its first derivative. We 
a a a 

shall say that the family is fy_ll if 

2 * 
1) for a= 0 , one has G (b) > x . In that case all iterates of the 

0 0 0 
n * 

critical point, i.e. G (x ), belong to the interval CG (b ),b l 
0 0 0 0 0 
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2 * * 3 * * 2) for a= 1 , one has G (x) < x and G (x) < x 
1 1 1 1 1 1 

Thus in a full family, for a near O , the only periodic orbits that G may 
a 

have, are fixed points or cycles of period 2, as one can easily verify. By 

contrast, for a near 1, the map G has a cycle of period three, in view of 
a 

Lemma 0.1.1, and thus from Sarkovskii's theorem, cycles of every period. 

Although Sarkovskii's theorem is nota statement about stable cycles, 

one should expect nevertheless that, in a full family, for any period k , a 

stable cycle of that period should appear for some open interval of the 

parameter, somewhere in C0,1J. Furthermore, in view of the ordering of the 

integers appearing in Theorem 0.1.2, stable cycles of a period equal to a power 

of 2 should appear first, i.e. for smaller values of a. The next fact makes 

precise this intuition. 

Theorem 0.1.6. Consider a continuous. full. one-parameter familv of single 
f'li::1t• --~ru,,._., 
peaked maps G indexed bY a 1o. co,11, as above. Then 

a 

1) given anY k > 2, the set of parameters a for which G ~ 
a 

superstable cycle of period k is non-empty and closed. Given such an a , there 

is an open interval containing a such that G has a stable cycle of period k 
f3 

for every f3 in this interval. 

* 2) W a be the first value of a for which there exists a superstable 
p 

cycle of oeriod 2P for p > * • Then the seguence a increases with p and 
:: p 

* * converges to some value a < ~ p tends to +•. For each a 1o. cO,a) , ill 

cycles of the map G have a period that is a power of 2 or are fixed points. 
a 
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3> If suoerstable cycles of perjods 2P ~ 2q !iil.h q > p+1 occur 

* 
respectively for the values a and~ in co,a > , then a suoerstable cvcle of 

00 

k 
period 2 , with q > k > p , must appear for some value in the open interval 

defined by a and~ . 

The foregoing result is valid even for maps that have nota negative 

Schwarzian derivative. If we make that additional assumption, we get 

Theorem D.1.7. Consider a continuous. full, one-parameter familv of maps G 
a 

that satisfv each CD.3>, CD.4), CD.5> and CD.6>. Then 

* 
1) for any a in cO,a) , the map G has a unique weaklv stable cvcle ; 

.., a 

* 
2) there is an uncountable set of values of a in Ca ,11 for which G ~ 

CIO a 

no weaklv stable periodic orbit. 

These results can be translated into a (global) bifurcation diagram, in 

the spirit of the (local) bifurcation diagrams that were used in the previous 

appendix, by putting on an horizontal axis the parameter a , and by 

representing on a vertical axis, for each value of a, the corresponding stable 

periodic orbit(s), whenever it exists. If we focus on the case where each 

member of the family has a negative Schwarzian derivative, we obtain a cascade 

* of global period doubling bifurcations, as in Fig. D.3, on the interval CO,a ). 
CIO 

There, stable periods equal to a power of 2 are "visited" consecutively as in 

the last line of Sarkovskii's ordering of the integers (but not necessarily 

monotonically : think of a nonmonotonic reparametrization of the family). 

Stable cycles with a period different from a power of 2 must (and will) occur 
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* in open intervals of Ca ,11. Once such a stable period obtain, say an odd 
00 

number, one should observe subsequently a cascade of global period doubling 

* 
bifurcations. For an uncountable number of values in Ca ,tl, the map is 

00 

"aperiodic" there is no stable cycle. 

Fig. D.3 

Such a pattern can be produced "experimentally", by using Theorem D.1.4, 

and simulating the difference equations on a computer. One may employa grid of 

values of the parameter, and plot on a vertical axis above each a in the grid, 

n 
the values of the iterates G (x) , say for n = 100 ton= 200, of a point 

a 

chosen at random in the corresponding interval Ca ,b l. If each G has a 
a a a 

negative Schwarzian derivative, this procedure will display cl~arly stable 

cycles that have a low period and are attracting enough. The experimental 

procedure will thus reproduce neatly the cascade of period doubling 

* * bifurcations in cO,a ). Beyond a , we shall observe typically in some places, 
00 00 

little windows with small stable periods such as 3 or 5, together with the 

beginning of the corresponding period doubling cascade in other places, we 

will observe a "mess·· : there is then either no stable cycle, or a stable cycle 

with a long period or that is only little attracting. 

Fig. D.4 describes such an experimental bifurcation diagram for the 

logistic familv 

2 
G (x) = 1-ax 

a 
x in c-t,11 , 



11) 
~ 

R ,1 
0 

;z. 
& * 
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for O <a< 2 • For each value of the parameter a in that interval, G is 
= a 

* * * single peaked, with a unique critical point at x = 0 and G (x) = 1 > x 
a 

it has a negative Schwarzian derivative, since G'''Cx) ~ 0 . It is easy to 
a 

2 * * verify that G Cx > > x , for a close to O . For a= 2 , one has 
a 

2 * 3 * * 
G Cx) = G (x) = -1 < x 

a a 
; the graph of G is then as 1n Fig. 0.2.b : there is 

a 

a cycle of period three, hence a cycle of every period, and none of these 

cycles is stable. The logistic family, for a in (0,21 , is full. 

Fig. D.4 

Deterministic chaos 

Nonlinear difference equations on the real line can generate periodic 

orbits, as we have seen. They can also yield much more complex trajector1es,. 

that look ''random·· and rather unpredictable, although.they are generated by a 

purely deterministic dynamical system. We have already alluded to the 

possibility of such a behaviour when giving examples of maps that have no 

stable cycle (Fig. D.2). The phenomenon has attracted a lot of attention, for 

it seems to open the possibility to "explain" phenomena that look apparently 

random by deterministic nonlinear dynamical systems, and thus to reconcile 19th 

century determinism and unpredictability. 

The notion of chaos that we wish to discuss first is due to Li and 

Yorke. We say that the map G from Ca,bJ into itself is chaotic if there is an 

uncountable subset S of the interval, containing no periodic orbits, such that 

1) for every x,y in S , x ~y, 

n n 
lim sup G Cx) - G (y) > 0 • 

n 

n n 
lim inf G (x) G Cy) = 0 

n 
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2) for every x in Sand y periodic, 

n n 
1 i m sup I G ( x) - G (y) 1 > 0 . 

n 

This definition means that for any two (different) initial conditions x and y 

in the chaotic set S , the corresponding trajectories become infinitely often 

extremely close to each other and also infinitely often noticeably separated. 

The notion seems to account for one essential feature of "turbulence": small 

perturbations of initial conditions lead to trajectories that are notably 

different. 

Li and Yorke (1975) proved that if the continuous map G has a cycle of 

period three, then Gis indeed chaotic. On the other hand, it is not difficult 

n 
to see that if an iterate G is chaotic for some n > 1 , then Gis also 

chaotic. If one puts together these facts with Sarkovskii's Theorem, one gets 

The~_em_D:1.8~ If the continuous map G : ca,bJ ~ ca,bJ has a cvcle of a oeriod 
....-.., ---., nu c ur• 

that is nota power of two. then Gis chaotic. 

This notion of chaos is not quite satisfactory from a "physical" point 

of view, however. It happens very often that although a given map Gis chaotic 

in the above sense, there is a stable periodic orbit that attracts most points 

of the interval with respect to the Lebesgue measure. In view of Theorem D.1.4, 

this will happen if Gis single peaked, has a negative Schwarzian derivative, 

and has a stable cycle of a period that is nota power of two. In a bifurcating 

family of maps G that are single peaked and have a negative Schwarzian 
a 

derivative as in Theorems D.1.6 and 7, maps G will often be chaotic in th~ 
a 

* sense of Li and Yorke in the whole interval Ca ,11, yet for many open 
00 
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subintervals, there will be a stable cycle attracting most points of Ca ,b l. 
a a 

ln such circumstances, the presence of the chaotic set S may affect the 

trajectories for some time, but will not influence the asymptotic behaviour of 

the system. 

This discussion shows that in this context, a satisfactorv notjon of 

chaos should involve maps that have no stable cvcle. In view of Theorem D.1.4, 

if Gis single peaked and satisfies SG < 0 , this means that the iterates of 

the critical point either do not converge, or hit an unstable per1odic orbit. 

Among the class of such aperiodic maps, of special interest are those 

which have an "invariant probability measure" that has an integrable dens1ty 

with respect to the Lebesgue measure. The probability measure von Ca,bl 

(endowed with its Borel o-algebra) is said to be invariant with respect to Gif 

-1 
v(G CA))= v(A) for any Borel set. An example of such an invariant probabil1ty 

measure is provided by considering a periodic orbit <x ,x , ... ,x > and the 
0 1 k-1 

probability measure v that assigns the weight 1/k to each x , j = O, ... ,k-1 • 
j 

More generally, the support of an invariant probability measure, i.e. the 

smallest closed set A that has probability one, is an invariant set : GCx) is 

in A whenever x belongs to A. If v has a density Cwe shall say then that v 1s 

continuous), the invariant set contains an uncountable set of points, and has 

positive Lebesgue measure. Finally, vis said to be ergodic if for every 

v-integrable real function f , 

1 n 
-r 

n j=1 
f(GJ- (x)) - f dv . 1 f 

as n tends to +•, for v-almost every x . This implies in particular that if 

one considers for each x and every n , the empirical distribution v (x) that is 
n 

j 
generated by the iterates G (x) for j = O, ..• ,n-1 , which assigns the weight 



1/n to each Gj(x) , then the sequence v (x) converges weakly to v for v-almost 
n 

every x (see, e.g. Parthasarathy (1967, Theorem 9.1) for a proof of that fact, 

and for a definition of the weak convergence of probability measures). Thus if 

G has an invariant probability measure v that is continuous and ergodic, most 

of the trajectories starting in the support A of v will stay there and will 

look quite complex since they will eventually fill up the entire support of the 

limit distribution v . In fact, rnost of these trajectories will be~ in A. 

Yet these trajectories display strong statistical regularities, since empirical 

distributions and time averages become asymptotically fairly stable for 

v-almost every initial point. 

It turns out that maps having a graph like those of Fig. 0.2. do have an 

invariant, continuous, ergodic probability measure, as the next fact shows. 

Theorem 0.1.9. Assume that the rnap G from [a,bl into itself satisfies(0.3), 

(0.5) and (0.6), that it has no weaklv stable oeriodic orbit. and that there 

* 
exists an open neighbourhood V of the critical point x such that the iterates 

n * 
G (x ) do not belonq to V, for n > 1 . Then G has a unique continuous 

= 
invariant probability measure. It is erqodic. 

The foregoing conditions are met if G satîsfies (0.3), (0.4), 

(0.5) and (0.6), and if the iterates of the critical point hit an unstable 

oeriodic orbit. 

Another notion of chaos, which is more directly inspired from the 

concept of Li and Yorke, is the following one. A map G from [a,bJ in~o itself 

is said to have sensitive dependence on initial conditions if there exists a 
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subset S.of the interval, having positive Lebesgue measure, such that for every 

x,y in S with x ~y, 

n n 
lim sup G (x) - G (y) > 0 

n 

n n 
lim inf I G Cx) - G (y) 1 = 0 

n 

The difference with Li and Yorke is that one reQuires here "turbulence" to 

occur on a set of initial conditions that is "thick'' enough, i.e. that has 

positive Lebesgue measure. According to Theorem D.1.4, if the map Gis single 

peaked and hàs a negative Schwarzian derivative, sensitive dependence on 

initial conditions can obtain only if there is no stable cycle. 

The idea of sensitive dependence on initial conditions can also be 

captured by using the notion of so-called Lyapounov exponents. Let x be a point 

j 
in Ca,bJ, and let x = G Cx) be its iterates for j > 0 , with the convention 

j = 
that x = x . The Lyapounov exponent of Gat xis then defined as 

0 

1 n 1 n-1 
lim - [ LoglG'Cx )1 
n-+oo n j=t j-1 

= li m - Log I CG ) ' C x) 1 
n-+oo n 

whenever the limit exists. When the definition is specialised to the case of a 

fixed point, or more generally a periodic point of period k, the corresponding 

k 
Lyapounov exponent is simply the logarithm of the modulus of CG )'(x) • 

Intuitively, the Lyapounov exponent rneasures the average Cexponential) rate of 

separation of the orbits of points near x frorn the trajectory generated by x • 

Thus the idea that trajectories are sensitive to small changes of the initial 

condition x , may be expressed by the property that the Lyapounov exponent of G 

at x exists and is positive. 

Consider now a map G that has an ergodic, continuous invariant 

probability rneasure v . Then by definition of ergodicity, Lyapounov exponents 
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exist for v-almost every x in the support A of v ; they are in fact equal to 

f LoglG'{x)I dv , and are thus independent of x. We may then speak of lli. 

Lyapounov exponent of G on A. If we assume that it is positive, then the set A 

has positive Lebesgue measure, and almost every initial condition x in A gives 

rise to a trajectory that is dense in A and displays sensitive dependence on 

initial conditons. Although the law of motion of the system is deterministic, 

trajectories in A will look random, and will be in fact unpredictable after a 

significant number of iterations if one makes even small errors of measurement 

of the initial condition. The set Ais then an instance of what is called a 

stranqe attractor, and gives rise to deterministic turbulence or chaos. 

A natural question arises in this context : what is the relative 

frequency of stable periodic behavibur and of chaos in one-dimensional 

difference equations? The issue involves in fact a subtle conflict between two 

notions of "genericity", 

A convenient framework to analyze the issue is, again, to consider a 

one-parameter family of single peaked maps having a negative Schwarzian 

derivative, as in Theorem D.1.7. A common conjecture among mathematicians is 

that for many "reasonable'' families in that class, the set of values of the 

parameter a for which a stable period obtains is open and dense in C0,11. 

According to this topological viewpoint, maps G that have no stable cycles in 
a 

the family are "rare", and moreover, structurallv unstable, i.e. a small 

perturbation of the parameter a would lead back to a stable period. Examples of 

such structural unstability are most easily visualized by looking at Fig. D.2. 

The maps there have an invariant continuous probability measure, because the 

iterates of the critical point happen to hit upon an unstable fixed point. It 
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is clear, however, that such a feature can be destroyed by a small perturbation 

of the map under consideration. 

By contrast, it was shown by Jakobson (1981) that under the assumptions 

of Theorem D.1.7, for many "reasonable" families, the set of values of the 

parameter a for which G has an invariant, continuous ergodic probability 
a 

measure, and displays·sensitive dependence on initial conditions Chas positive 

Lyapounov exponent) has positive Lebesgue measure. According to this 

measure theoretic viewpoint, chaotic behaviour cannot be considered as 

rare. If one chooses at random the parameter a in the family, there is a 

positive probability to obtain a map that leads to deterministic chaos. 

D.2. Homoclinic bifurcations and horseshoes 
"'7 -· n w ~ ~.. -~--., u JJ.4lf"w'" 4 ...... 

The example of complex periodic orbits and of chaos that were just 

described involved single peaked maps of the real line with a significant 

"hump". Such maps are admittedly special, but they contain a mechanism that 

seems to show up in many other cases of deterministic chaos that have been 

found in higher dimensions : if we look at the maps represented in Figure D.2, 

for instance, the image of the interval is obtained by stretching it, and 

folding it back into itself. We present now a diffeomorphism of the plane, the 

socalled horseshoe map, that is due to Smale, and leads to a complex invariant 

set through a similar mechanism. As we shall see, horseshoes arise for 

diffeomorphisms of the plane when there is a transverse crossing of the stable 

and ustable manifolds of a hyperbolic fixed point. The phenomenon was known, as 

least qualitatively, to Poincaré and Birkhoff. 
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The Horseshoe 

1 
Consider a C diffeomorphism G of the plane, that sends the unit square 

S onto the horseshoe shaped set G(S), as in Figure D.5, with A' being the image 

of A, B' that of·B, etc. (the map may actually be defined only on a 

neighborhood of the region that interests us). The transformation involves 

first a uniform vertical contraction by a factor a< 1 , second a uniform 

horizontal expansion by a factor b > , and finally, a folding of the 

resulting rectangle in its middle. The only nonlinear transformation is the 

third one, and it is assumed that it concerns only points of the horseshoe that 

fall outside the unique square. 

Figure D.5 

We are interested in characterizing the set A of points x of the unit 

n 
square such that G (x) is in S for all n , positive and negative. In this 

respect, it is useful to let Â and Â stand for the pre-images of the 
0 1 

intersection of G(S) and S , as in Figure D.6.a. By construction, the set 

G(S) n S is composed of two horizontal rectangles of height a , while Â and Â 
0 1 

-1 
are vertical rectangles of width b 

The set of points x of the unit square such that GCx) belongs to S is 

-1 
thus equal to the union of Â and Â , or equivalently to G (G(S) n S) . By 

0 1 

iterating the map twice, we see that the image by G of G(S) n S is composed of 

two thinner horseshoes that are contained in G(S) . Their intersections with 

2 
the unit square yield four horizontal rectangles of height a , the union of 

which form the set 
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2 
GCGCS) n S) n S = G CS) n GCS> n S , 

see Figure D.6.b. The set of points x of the unit sQuare such that both G(x) 

2 -2 
and G (x) belong to Sis the union of the images by G of these four 

horizontal rectangles. This set is therefore composed of four vertical 

-2 
rectangles of width b , as shown in Figure D.6.c. Proceeding by induction on 

n , one sees that the set of points x of S such that Gj(x) is in S for every 

n -n 
j = 1, ••• ,n , is the union of 2 vertical rectangles of width b , given by 

-n n 
G (G CS) n n GCS) n S) . 

In the limit for n ~ +• , the iterates Gj(x) of x lie in the unit sQuare for 

all j ~ 0 if and only if .x belongs to a family of vertical segments of S . The 

foregoing construction makes apparent that the projection of this family of 

vertical segments on the horizontal basis of Sis a Cantor set Calso called a 

perfect set) A , i.e. a closed set such that 1) the largest connected subset 
+ 

is a point, and 2) every point of A is an accumulation point of A 
+ + 

Figure D.6.a Figure D.6.b Figure D.6.c 

One can proceed in a similar fashion for backward iterates. The set of 

-1 
points x of S such that G (x) is also on Sis eQual to the intersection of 

GCS) and S , i.e. to the two horizontal rectangles of Figure D.6.a. Similarly, 

-1 
the set of points x of the unit sQuare having the property that both G (x) and 

-2 
G (x) are in S , is composed of the four horizontal rectangles of Figure 

D.6.b. Proceeding by induction on n and going to the limit, yields that the set 

-n 
of points x of S such that G (x) 1s in S for every n ~ 0 is a family of 

horizontal segments. Its projection on the vertical side of the unit sQuare is, 
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again, a Cantor set A 

n 
Therefore G (x) belongs to S for all n , positive and negative, if and 

only if x belongs to the product of these two Cantor sets, i.e. A= A x A 
+ 

To describe the structure of the orbits that lie in the invariant set A 

that we just obtained, it is convenient to employa method called symbolic 

dynamics. The principle of the approach is to substitute to the complex task of 

tracking down where the forward and backward orbits of a given point lie 

exactly, the much simpler task of identifying regions in which the points of 

the orbit may fall. 
n 

In the case at hand, if x 1s in A , every iterate G (x) belongs either 

to 6 or 6 , for each positive or negative n . For any x in A , we can 
0 1 

therefore define a bi-infinite sequence l(x) , the n-th element of the 

n n 
sequence, i.e. I (x) , being equal to O if G (x) is in 6 , and to 1 if G (x) 

n 0 

belongs to 6 , for - ""< n < +•. 
. 1 

It can be shown that the map x ~ l(x) from A to the set r of bi-infinite 

sequences of O's and 1's , is onto and one-to-one. In fact, a much stronger 

statement is true. Suppose that the set r is endowed with the metric defined by 

CD.7) d(l,J) 
+00 -lnl 

= [ 6 2 _.., n 

with ô = 0 if I = J , and ô = 1 otherwise. Two sequences I and J are thus 
n n n n 

close in the topology induced by the metric (D.7), if and only if they agree on 

a long enough "central block", i.e. I = J for all lnl ( N for some large 
n n 

enough N . Then the map x ~ l(x) from A onto [ , endowed with this metric, is 

actually an homeomorphism. Since for any element x of A , the sequence 
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corresponding to G(x) , i.e. l(G(x)) , is obtained from the sequence l(x) by 

shifting indices one place to the left, the restriction of G to the invariant 

li Ais topologicallv conjugale to the (left) shift automorohism a : r ~ r 

defined bv Co{l)l = I , for -N < n < +N (see Guckenheimer and Holmes (1983, 
n n+1 -

Theorem 5. 1 . 1 ) ) . 

This result enables us to substitute to the study of the orbits of 

points x of A , the analysis of the corresponding sequences l(x) • For 

instance, an element x of Ais a periodic point, of period k , if and only if 

l(x) ·1s periodic, of period k • It follows that G has two fixed points in S , 

one in â and the other in â More generally, G has periodic orbits of every 

period in A. It is not difficult to see that the set of these periodic orbits 

is actually dense in A. lndeed, let x be in A and consider the corresponding 

sequence l(x) . Let J be a sequence that agrees with l(x) for all lnl < N, and 

that has period k > N . By taking N (and thus k) large enough, the sequence J 

can be made as close as one wishes to l(x) in r , endowed with the metric 

(D.7). Since the map x ~ l(x) is an homeomorphism, the ijlement y of A such that 

J = l(y) , is a periodic point, with period k , and is also as close as one 

wishes to x. 

The same type of argument shows that A contains an uncountable set of 

nonperiodic orbits, that is dense in A . It is also quite easy to show that A 

contains a dense orbit. Indeed, let J be a sequence in r that has a subsequence 

every finite sequence of O's and 1's one can think of. By adapting the above 

density argument, the orbit generated by the element y of A such that l(y) = J 

is actually dense in A. To sum up this discussion, 
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Theorem D.2.1 (Smale) The horseshoe map G has an invariant Cantor set A~ 

1) A has periodic orbits of everv period. The set of such periodic 

orbits js dense. 

2) A has an uncountable set of nonperiodic orbits. This set is also 

dense in A. 

3) A has a dense orbit. 

It is intuitively clear from the preceding discussion, (but nontrivial 

to prove) that the Qualitative features of the example shou~d be structurally 

1 
stable, i.e. should remain valid after a small enough C perturbation. lndeed, 

* 1 
Theorem D.2.2 (Smale) : .Le1 G be a diffeomorphism of the plane that is C ..-. --=--·· .. 
close enough to the horseshoe map G Cat least in the region of interest). Then 

* * * * G has an invariant Cantor set A such that the restriction of G .t,Q A i,s 

topologicallY coniugate to the restriction of G .t.,Q A. 

Remark D.2.3 : Despite its many attractive features, the invariant set A of the 

horseshoe map is not an attractor : if one perturbates slightly the initial 

condition x so as to make it to fall outs.ide A , the forward or backward orbit 

of x will eventually leave the set S . Yet, the presence of the complicated 

invariant set A will affect the behaviour of nearby trajectories, often for 

Quite some time. For an illuminating example of a complicated invariant set 

that can be analyzed through the above symbolic dynamics methods, and that is 

indeed an attractor (the so-called solenoid), see Lanford (1983). The example 

is three dimensional, and involves stretching and folding a solid torus. 
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Homoclinic Bifurcations 

The qualitative features of the horseshoe map can be generated in the 

case of diffeomorphisms of the plane, when there is transverse crossing of the 

stable and unstable manifolds of a hyperbolic fixed point. 

r 
To see this point, consider a C diffeomorphism G of the plane, with 

r ~ 1 , and let x be fixed point of G (here again G may be defined only on a 

neighborhood of x that is sufficiently large to make the following arguments to 

go through). We assume x to be hyperbolic, i.e. the Jacobian matrix DG(x) has 

no eigenvalue of modulus one. We know that the local stable and ustable 

s u 
manifolds W(x) and W(x) are then well defined and unique in a sufficiently 

small neighborhood of the fixed point (Theorem B.5.1). The global stable 

manifold of xis then defined by taking the union of the backward iterates 

s 
of W 

ex> 
s -n s 

W = U G CW ) 
n~O (x) 

Similarly, the global unstable manifold of xis obtained by taking the union of 

u 
the forward iterates of W(x) 

u n s 
W = U G CW > 

n)O Cx> 

We consider the case where the global stable and unstable manifolds of x 

intersect transversely, as in Figure D.7.a. The point of intersection, say y, 

is then an homoclinic point. There must be actually infinitely many such 

n 
homoclinic points : all forward and backward iterates of y, i.e. G (y) for 

s u 
-• < n < +- , belong to both W and W . The (forward and backward) orbit of y 
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n 
is then called a transversal homoclinic orbit. Since G (y)~ x as n ~ +M , the 

u s 
unstable manifold W must cross more and more often the stable manifold W 

and oscillate more and more wildly as one gets closer to the fixed point x. A 

similar statement holds for the stable manifold. 

Figure D.7.a Figure D.7,b 

One should expect complex dynamics to occur in such a case. If one 

considers a small tubular neighborhood V of the stable manifold, the image 

n 
G CV) should be, for n > 0 large enough, a tubular neighborhood of the unstable 

manifold, as in Figure D.7.b. Intu1tively, all the qualitative features of the 

previous horseshoe example should also be present here. Indeed 

1 
Theorem D.2.4 CSmale homoclinic the.orem) Let G be a C diffeomorphism of the 

plane and x a hvperbolic fixed point. If the stab]e and unstable manifolds of x 

intersect transverselv at y~ x, there exists a neighborhood V of the fixed 

n 
point and an integer n > 0 such that the restriction of G 1.Q. V .is. 

topoloqicallv coniugate to the horseshoe map. 

The same phenomenon will occur in particular when a fam1ly of 

diffeomorphisms G of the plane, undergoes a (global) homoclinic bifurcation, 
a 

i.e. when the unstable manifold of a hyperbolic fixed point becomes tangent (in 

fact at infinitely rnany points) to the stable manifold, say when a= 0 , to 

lead a transverse crossing for a> 0 . The qualitative features of such a 

bifurcation are described in Figure D.8.a, b, and c. 
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Figure D.8.a Figure D.8,b Figure D.8.c 

Notes on the literature .. 
The presentation of the global bifurcations of maps of the real line, in 

section D.1, is adapted from a previous survey, Grandmont (1986), which was 

itself derived from Collet and ~ckmann (1980). See also Guckenheimer and Holmes 

(1983, Chaps. 5.6 and 6.3), May (1976), Misiurewicz (1983). 

Section D.2 on the horseshoe map and the homoclinic theorem is adapted 

from the very clear exposition of Lanford (1983), and from Guckenheimer and 

Holmes (1983, Chap._ 5.1 and Theorem 5.3.5) ; see also Smale (1980). 

The use of symbolic dynamics to describe complex orbits is pervasive in 

this context. For further information and references on this question, the 

reader may consult Guckenheimer and Holmes (1983, Chap. 5). 

The complex invariant sets that we met when studying maps of an interval 

that have a continuous invariant measure, or when analyzing the horseshoe map, 

are examples of what is called a strange attractor in the literature. There are 

many vaiations in the definition of such an object, but the general idea is to 

define it as a closed invariant set A with a complicated structure, that 

attracts a set of points having positive Lebesgue measure, and that contains a 

dense orbit. The requirement that A has a complicated structure is sometimes 

expressed by the property that it has positive Lebesgue measure, or that its 

"dimension'' is not an integer (fractal dimension), or both. In many instances, 

one requires the underlying map G to have an ergodic invariant probability 

measure concentrated on the attractor. One can then define Lyapounov exponents 
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in much the same way as in section D.1. "Turbulence" will then obtain on A if 

the maximal Lyapounov exponent on Ais positive (the idea of turbulence is also 

sometimes expressed by the reQuirement that the attractor contains a 

transversal homoclinic orbit). On these questions, the reader may consult 

Guckenheimer and Holmes (1983, Chap. 5). 
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