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CROISSANCE OPTIMALE ET PARETO-OPTIMALITE
RESUME

L'objectif de ce papier est de montrer qua dans une Economie intertempo-
relle oll les agents ont des utilités récursives tout Pareto-optimum est solu-
tion d'un probléme de Mc Kenzie généralisé. Un espace d'état "abstrait" est
introduit: celui des couples de stock de capital et des utilités que peuvent obtenlr
n-1 agents 3 partir de ce stock de capital. Des conditions "technologiques gé-
néralisées" sont définies sur cet espace ainsi que le critére récursif. A par-
i+ des &quations de Bellman et d'Euler on généralise certains ré&sultats dyna-

miques connus dans le cas séparable avec un seul agent.
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ABSTRACT

The purpose of this paper is to show that in a stationary interteﬁporal
economy where agents have recursive utilities every Pareto-optimum is solution
of a generalised Mc Kenzie problem. An "abstract" state space is introduced as
the space of couples of capital stock and utilities that can be reached by n-l
agents from that capital stock. "Generalised technological” conditions are then
defined on that abstract space as well a recursive criterion on sequences of
its elements. The criterion generalises the additively separable one. As Bellman's
and Euler's equations still hold, many dynamical results known for the additively

separable one agent case can be generalised.
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Introduction.

As it is well known, Mc Kenzie's model has played a key role in the
study of the dynamical properties of optimal paths in the neoclassical
theory of growth. It has been used to obtain turnpike results (Mc Kenzie
(1985 1, Scheinkman [1976]), cycle results (Benhabib and Nishimura [19851).
More recently Boldrin and Montrucchio [1986] , Deneckere and Pelikan [1986]
have used it to show that the dynamics of optimal growth paths could be
arbitrarely complex.

It is also well known that in an intertemporal stationary economy where
agents have additively separable utilities and same discount factor, every
Pareto-optimum is solution of an optimal growth problem where the criterion
is a weighted sum of the utilities of the different agents. These weights
turn out to be a characteristic of the Pareto-optimum.

The purpose of this paper is to show a similar result in the case where
agents have stationary utilities instead of additively separable utilities.
These utilities are usually called recursive utilities in the literature
(Koopmans et Ali [1964], Lucas and Stokey [1984], Benhabib et Ali [1985]...).
We first show that one can easily generalise Mc Kenzie's model to the case
of a recursive criterion. As Bellman's and Euler's equations still hold,
many dynamical results known for the additively separable case can be genera-
lised. We then show that in a stationary intertemporal economy where agents
have recursive utilities every Pareto-optimum is solution of a generalised
Mc Kenzie problem. An "abstract" state space is introduced as the space of
couples of capital stock and utilities that can be reached by n-1 agent from
that capital stock. "Generalised technological’ conditions are then defined
on that abstract space as well a recursive criterion on sequences of its
elements.

The paper is organised as follows:

In part one we recall the axiomatic of recursive utilities. This part
generalises Koopmans et Ali [1964] and Lucas and Stokey [1984].

In part two we introduce the generalised version of Mc Kenzie's model
and extend a few dynamical results on optimal paths (e.g. Mangasarian's
result [1966] ).

In part three we show that every Pareto-optimum is solution of a gene-
ralised Mc Kenzie model. We then use the dynamical resﬁlts of part two to
give properties of examples studied in the literature (Benhabib et Alil[1985],
Lucas and Stokey [1984] ).



I - RECURSIVE REPRESENTATION

1.1 - Following Beals and Koopmans (19691, Lunés and Stokey [19841, we

introduce an aggregator function defined as follows.

Definition 1

Let g be an integer. Let C be a closed convex set of Rg. A function W
from C x R+ into R+ is an aggregator function if it satisfies the following

properties :
Wi : continuous ; W(x,0) <M, ¥x € C ;
W2 concéve ;

for some B8 €L0,11
W3 : W(x,z) - Wix,z")| < Blz-z'|,

Vx € C, Vz, ¥z’ € R+ ;
W4 : z <z o> Wix,z) € Wix,z")

1.2 - Let X be the space (RT)" endowed with the product topology. An element in
X is denoted by X = (xo, XI"‘)' Let L denote the shift operator'on X,
i.e Ef z (x1, Xy R I

Let Q be a closed convex, L-invariant subset of X ; S will denote the

space of bounded continuous functions from Q into R+ endowed with the sup -norm,

ull

1"

sup u(x). Let f : X (Rm)r+l be the map x -~ (xo, Xps soes X ) and
x€Q ~ r r ~ r

let C fr(Q)'



We have the following theorem :

-

heorem 1.1

With every ag :gator W defined on C x E% one can associate an operat: v
on § as follow, ¢ Tw ulx) = W(fr(x), uft. x)).,

~ ~ ~

Tw is a contr.:tion. Hence there exist- a unique u, which is concave,
such that :

Yﬁ € Q, ulx) W(fr(x), ull x)).

pet g ulo S Dot ) with €5,
T., u belong:. o § since it is continuc.s and bounded on ; indeed
W

Wi and W3:

Vx € Q, ITw aeox)] < plull x) ) o+ W(fr(xi,O) < Bllull + M

By W3, Tw is a p-cuu raction on S. The uniqu fixed point u is concave si .

under W2 and W4, T, .aps concave functions i1 .o themselves.
Q.E.D

Let us intro:itice the following axioms :

W2 bis : W is concave and for every ., W(.,z) is strictly concave.

W4 bis : (x,7) # (x’,z") and (x,2) & x',z2") implies Wix,z) < W(x',z )
W5 . 0 ¢ C and W(0,0) =0

The following propositions is proved :n Dana and Le Van [19873.



Proposition 1.1

a) If W satisfies W1, W2 bis, W3, W4, then u is strictly concave
b) If W satisfies W1, W2, W3, Wdbis, then u is increasing
c) If W satisfies W1 - W5, then u(0) = 0

[.3 - Examples

Example 1.1 : The discounted case

Let Q = X ; then C = (RT)F+‘

Let v : C~+ 10,11 be any continuous concave function.

Let W : C x R+ -+ R+ be defined by

Wix v X z) = v(xo,x1,...,xr) + Bz ; B €ECLO,IL.

O’Xi""

W is an aggregator and the unique fixed point of Tw

. - t
is uﬁz) = tEO B V(xt’xt+1""'xt+r)

Example 1.2 : Lucas and Stokey’s example [19841

let Q =X, r=0, C-= RT . let W: C x R+ -+ R+ satisfy‘W1-W4. Then its

unique fixed point satisfies :

Vx € Q, ulx) = N(xo,u(L x))

~

Example 1.3 : Beals and Koopmans’ example (19691

let W=X,r=0, C= RT . Consider a function



w: 0,17 x R_» R_that satisfies W W4 bis and v : RT + 10,11 be any

concave, strictly increasing continuous function.

Then W : C x R+ + R+ defined by W(x,z) = w(v(x),z) is an aggregator and

the unique fixed point u of Tw satisfies
Vx € Q, ulx) = w(v(xo), ull x))
An example considered by Koopmans et atli [19641 is

wix,z) = Log(1+Bx6 + yZ)
with B8, v, 8>0, y<1t ,8<1.
IT - A GENERALISED Mc KENZIE MODEL

Consider a quadruple (A, T, C, W) which satisfies the following
hypothesis : °

At : A is a closed convex subset of Rg with non empty interior

A2 : T is a set valued continuous correspondence frdm A into A with nun
empty compact convex values. Its graph C = ((xo,xi), Xq € A, X, € T(xo)} is

closed and convex.

A3 : W is an aggregator defined on C x R+ and for every fixed (xo, z),
“the map W(xo,.,z) is strictly concave

Let X = (Rg)°° endowed with the product! topology.

Let Q= { x € X, x € A, X,y € T(x), V> 0}, then Q is a closed
convex L-invariant subset of X and C = fi(Q)‘ [t follows from Theorem I.1 that
there exists an unique continuous concave function u from Q into R+ which

satisfies Yﬁ € qQ, u(z) = W(xo,xi,u(L 5)).
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As, Vxy € A, the set X(xg) = {gi) € X, xg,q ET0X), VE3 1, % = ;0}

is compact, the following problem Px u has a solution :
0’ »

max ulx)
x € Q, and X0 fixed in A

Under A3 the solution is unique and is the trajectory of a dynamical
path obtained as follows. Let V : A - R+ denote the value of Px u’ We have :

0
Theorem 11.1
a) V satisfies Bellman’s equation
Vixy) = max {w(xo,x1,V(x1)),x1 € T(xo)} and is ()
concave and continuous
b) x solves P 1F % = ot (xg) with
w(xg) = Arg max {W<x0,x1,v<x1)), x, € T(xo)} (2)

Proof : It is omitted since gquite standard in dynamic programming.

Q.E.D

Let us now assume :

A2 bis : T satisfies A2, and C has a non empty interior.
We then have :

Proposition II.1

Assume (xo, w(xo)) is in the interior of C and w(.,x1,z) is
differentiable for every fixed (x',z). Then V is differentiable at ) and one

has :



iy - W
\Y (xC) z axo (x(jm(xo),V(m(xo))) (3)
Proof : As (xo,m(xo)) € int C, there exists a neighborhood N(xo) of X0 such
that m(xo) € T(x), ¥x € N(xO) (see appendix 1;. Then one has

W(x,w(xo), V(¢(x0))) ¢ Wix,p(x),Vip{x))), Vx ¢ N(xo). Apply Benveniste and

Scheikman’s [19791 lemma 1 to get the result.
The following result is also straightfourward :

Proposition 11.2

Let {;t} be an optimal solution. Assumc W differentiable and
(X, %, 4,V(X ‘) in the interior of C xR , for every t 3 0. Then
£ E+H1 t+ +

<;t> satisfies Euler’s equation :

M- - = W o~ — = W = = =
5§T(Xt’ Xeetr Ztat) * Bz Dt et Pt g (XpoprXps2r 2440 = 0 4
with Z, = V(X), Vt > 0

Let us introduce the following hypothesis :

W6 : W is continuously differentiable

W7 %¥~—— (XO’X1’ z) has a constant sign in C x R+

1,
Remark II.1

In the neoclassical theory of capital with discounting (see example

oW _ dv . X
I.1), one usug]]y assumes that axl 3 (XO’xi’Z) = 5;;—; (xo,x,) is negative for
all j. W6 is a less stringent hypothesis since the sign may be positive for

some coordinates.

The following theorem is based on Mangasarian’s proof [1966j



Theorem 11.2

Assume in addition W6 and W7. Let X0 be given. Let the unique optimal

solution (;t> of P‘ have the property that if sign oW equals one
Xq U axl'j

then {Qt j} is bounded. Then any uniformly bounded solution of (4) in Q

with initial data X0 is optimal

Proof Let {xt} be a uniformly bounded solution of (4).

Vix))

= W(XO’xt’ !

Let Z4

zy = N(xo,x‘, V(x1)) = V(xo)

and for t> 1 zy = V(xt) b N(xt, Xt+1'V(xt+1))' since xt+|€ T(xt)

Z, = V(xt) = U(xt,xt+1,V(x )

t+1
We shall prove that x = ;t' vt > 0

If x, ¢ ;l; then by concavity of W

— _ _ — — g}l— -.-b
0> Zg = 2g = w(xo,x1,V(x1)) N(xo,xi,V(x1)) 3 ax'(xo,x|,z,‘) (x1 x1)
oW -
+ 5;(x0,x1,z1)(z1—z1)
As zy > W(Xt'xt+1' V(xt+1)), vt 3 1

and x, z verifie (4), by induction, one gets :

t-1
= oW oW =
vt > 2, 0> 29~ 2 ? s:1 5;(xs_',xs,zs) 5§T(Xt—1'xt'zt)(xt_xt)



t
oW =
t v 5;(xs_1, X zs) (zy - Zt)
s=1
- oW
As z, z, x are bounded and sup 5E(X0’X1’Z) ¢ p <
~ ~ ~ Xp o XeosZ
0’71’
t-1
- ) W W _ -
zg - 2 » lim szp S:‘ 5;(x5*1,xs,zs) ax1(xt.1,xt,zt)( xt)

The R.H.S is non negative since :

- either, sign %g— = + 1, in which case the sequence {xt j} is bounded
1,3 ’
and the claim is true as ||%¥|| ¢ g and W is continuously differentiable ;

- either, sign 5%E—~ - - 1 in which case the claim obviously holds.
1,J

Hence zy = EO OF X, = ;1. A similar proof shows by induction that
Xy = Xy vt 2 0.
Q.E.D
As in capital theory, we shall use theorem II.2 to give local

convergence results.

Consider now the linearized Fuler’s equation. Let Xy = (Xt’xt+l'V(xt+Y))

2 2
W "W oW
[ 0x, dx, (xy) + 33 0%, (xy) x (xt+1)] dxy
2 2 2 2 2
3" W 3" W 3" W 3" W 3" W oW
+ (x)+-—————-(x)+———-—-—(x)+————(x)————(x o= )
l ax$ t [ax1 9z t dz dx, t 622 t axo ad ax0 bl

(5)
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2

W 0" W
) T G| Xy
3z ] X0
2 2
W 3% W o° W oW
+ 2=(x,) |/ (X, ) + ———— (xg . ) — (x..,)]| dx =0
3z *t [axo ax1 t+1 axO 3z t+1 axo t+2 t+2

Let us introduce the following hypothesis.
S1 : W fulfills Wi, W2 bis, W3, W4
S2 : W is at least three times continuously differentiable

S3 : All solutions of PX y are interior solutions so that Euler’s
O;
equation is satisfied at any optimal path

S4 : Every steady state xx is a regular zero of Euler’s equation ;
moreover (xx,.xx) € int C.
2 2

S5 . det [& )+ =2 M Gl 0
ox

0 ax1 axo 621 axo

By the implicit function theorem,under S5, (xt+2, Xt+1) can be expressed
as a Cz*Function of (xt+‘,xt) in a neighborhocud of (xx, xx). Let us denote by F

this mapping. We assume furthermore :

S6 : The Jacobian of F, DF{(xx,xx) is a hyperbolic isomorphism of R2p
with 2p eigenvalues, lAil <! for i < p, and lAiI > 1 for i > p.

There exists a decomposition of R2p= E1 &)Ez such that DF(x*,x*)(Ei): Ei‘
for i = 1,2, The restriction of DF(xx,xx) to Ei(resp. EZ) has eigenvalues

inside (resp. outside) the unit circle. Let us assume :
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S7 : "Regularity condition”

The projection of E1 on RP x {0) is an'isomorphism.

Theorem I1.3

A e e e B

Assume S1-S7. Then, every optimal path with initial condition Xq

sufficiently close to a steady state xx converges to it.

Proof - The argument is Scheinkman’s [19761 page 25. Given any X

sufficiently close to xx, one can find by the regularity condition a unique Xy
such that (XO’X1) is on the stable manifold-at xx. Since (xx,xx) belongs to
int C, and the stable manifold is invariant, one can choose X4 sufficiently
near xx such that the path generated by Euler’s equation verifies Xt+l€ T(xt)

for every t, and converges to xx. By Theorem IL.2, it is optimal.
Q.E.D

In the one dimensional case, one can generalise the monotonicity results
on the optimal trajectory proved by Benhabib and Nishimura £19851 and Benhabib
et ali [£1985]1.

Let us introduce the following assumptions

A4t Xy € T(xo) :

’

, X, € T(xo)
Xy <Xy implies X
Xy € T(xo)
XO 2 XO
Ad.2 %, E T(xoﬂ
, x; € T(xy)
X 3 Xy implies p
X4 € T(xo)
Xo £ Xq J
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We have the following result.

Theorem 11.4

Let A = [0,11. Assume A2 bis, A3, A4.1 or A4.2 and W continuously

differentiable. Assume that for some Xq gg"(XO"'V(')) is an increasing
0
(respectively decreasing) function. Then ¢ is non decreasing (resp. non

increasing) in a neighborhood of Xg - If the previous condition holds at
every Xg, then every optimal path converges towards a steady state

(resp. converges to a steady state or a period two cycle).

Proof Assume that for some Xg gg——(xo, ., V(.)) is increasing. As A is
0
compact, the condition still holds in a neighborhood of Xg N(xo). Let

X0 € N(xo), Xq > Xg* Let us denote Xy = w(xo), Xy = w(xo).

Assume x; < Xy 1f A4.1 holds then x; € T(xo)

and X, € T(xo) and therefore :

N(xo,x1, V(xl)) b N(xo,x1, V(xi))
and W(xo,x1, V(xi)) > Wix Xy V(XI))
Thus

’ ‘ ’

N(xo,x',V(x1)) - W(XO’XI’V(Xi)) + Wix ’XI‘V(xi)) - N(xo,x1,V(x|)) > 0

As Xy € T(u) and Xy € T(w), Vu 3 Xg this is equivalent to :

X0
MW,
J (ﬁ(u,xl,V(x

‘ oW
1)) - E(U,X',V(X1))) du 3 0

X0



Y
ot

But this quantity is by choice of Xg st~ictly negative : a

contradiction. Therefore if X0 > X0 m(xo) 3 ¢(x0).A similar proof may be given

if A4.2 is assumed.

The proof of convergence towards a steady state or a period two cycle is

a well-known fact of monotonic maps of the intarval.

Q.t.D

Remark 11.2

When W is linearly separable, i.e W(xo,x‘,z) = V(xo,x1) + B z with
0 ¢ g <1, then the condition in theorem 11.4 is the well-known condition
2

3 Vv

PR ax1 (XO'

axo Xi) >0 (resp. < 0).

Next section deals with the main result of the paper. We show that
modelling Pareto-optimality in an infinite horizon economy where agents have
recursive preferences leads to an optimisation problem which is a particular

case of the generalised Mc Kenzie model presented above.

I11 - A MODEL OF PARETO-OPTIMALITY

111.1 - Notations

i) Throughout this section, we shall use in Rh, where h is an integer,

the following notations :

’ ’

z »z <=> Vj=t, ..., h , 2.3 Z

zZ D z<= z,.>z,; V]
J J

11) Xh will denote the space (R_‘:)°° endowed with the product topology ;
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iii) Let n be an integer, x an element of (Rh)n , 1.e x :(x’,..,xn),

where x' € Rh, Vi=zt,...,n.

~ n
Then, by definition, x = L x ;
i=1

Giv) (x') will denote (x',....x™.

Remark III.1 - In appendix 1, we prove that tte correspondence I :

2 erha { oM e® L 1 oKt eXx }
+ + :

is continuous.

I111.2 - The_economy

We consider an economy with n consumer:, each of them lives for an

infinite number of periods t = 1,2,...

The economy is described by the list :
_ L. ) . B .
E;- (Xm s W, di=1,...,n; X ; B; LO)

. Xm is the consumption space of gach ag:nt. Agent 1 has utility function
Th Xm -+ R+ defined by an agregator W, Xp i« the space of sequences of
capital. B is the "technology correspondence”. It associates with a capital
stock k a set of pairs (x,y) of current consumption goods x and next period
capital stock y that are jointly producible. LO is the initial capital stock.
We shall explicit below the assumptions made on the preferences of the agents

and the technology.

I11.2.1 - Preferences

For every i, Wi is an aggregator function defined on RT X R+ which
satisfies W1, W2 bis, W3, W4 bis, W5, W6.
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By theorem I.1 and example 1.2, agent i’s preferences can be represented

by a utility function ui : Xm + R+ that verifies :

Vx' € X, ol = wied, uTax™

~

It follows from proposition 1.1 that u' is strictly concave increasing

and u'(0) = 0.

The technology is characterised by a-correspondence
B: RD 4R x RY
with the following properties :
BO : B is continuous
B1 : for each k, B(k) is convgx, compact, non empty
B2 : (x,y) € B(k), and 0 ¢ (x*,y’) € (x,y) implies (x’,y’) € B(k)

B3 : 0 < k’ < k implies B(k’) ¢ B(k)

Define, for A € [0,11, and x, x* € R™, v, vy’ € RE, k, k' € RE

xA = ax + (1-A)x’
Wz ay e (MY
Kz Ak o+ (1-AK°

B4 : if (x,y) € B(k); (x’,y’) € B(k’), then oM yM e BkM

BS : There exists x > 0 such that (x,y) € B(0)
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B6 : k > 0 implies that there exist x > 0, y > 0, (x,y) € B (k)

B7 : Let (x,y,k) # (x’,y’,k")
If (x,y) € B(k), (x’,y’) € B(k")

Then V A € 10,10, there exists x" > x* such that (x", y») € B(™

B8 : The map (k,y) -+ { x| (x,y) € B(k)} is lower semi-continuous.

Example II1.1

Let Fi(x,y,k) from RT X Rg X Rﬁ + R be a continuous, strictly convex
function, strictly increasing in x and y, strictly decreasing in k, with
F(0,0,0) < 0. Let B(k) = ((x,y), Fix,y,k) < O}. Then B satisfies B0O-B8.

A consumption path (§j) € (Xm)n is feasible from kO if it belongs to

- i n - ) s
the set Xtkg) = {(x') €X)", 3k € x, (xuky,y) € Blky), VE > 0 ; ko given)
The utility attainable set from k0 is defined as follows
_ no LT PR RO i
Ulky) = ((zi) eRl 2 =y h e x<k0)}

We have :

Theorem I111.1

Assume W1, W2 bis, W3, W4bis, W5 , BO-B6.

a) For every k, U(k) is compact, strictly convex and satisfies free
disposal : Vu € U(k), 0 ¢ u’ < u implies u’ € U(k).

b) For every A € £0,11, A U(k) + (1-A) U(k*) ¢ U(k™

c) Vk » 0, U(k) has non empty interior
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d) The correspondence, denoted by U, from Rg into R? . k » U(k)

is continuous

Proof - See Dana and Le Van [1987]
Q.E.D

111.3 - Description of Pareto-optimality

Recall that a consumption path (x ) € X(ko) is gareto optimal if
ther: exists no (x Y € X(kO) such that (u (x oy (' (x )).

1

Let v R+ RY

' _ -1
'(ZI' 22,...,zn) » (22""'Zn) and A = graph v o U.

From theorem 111.1, A is closed convex and has a non empty interior. Let

ZO = (ko, (26)i>2 } € A be given. (Z[i))i>1 is a Pareto-optimal utility vector

iff zé solves :
(P)  max { o s i 2, h. € Uk )}
; 0 (270454 0

Since U(ko) is compact, (P) has a solution. Let V(Zo) denote the value

of this problem. (P) can be rewritten as (P) :

R . ~
max { Whog,zp) 5 W (xo,zi) > zo, 325 3k, (xpky) € Blkg)

and (z:) € U(k1)>

‘ Y..,) € A.

Let 2, = (ky,(zy g5

Then one has :

V(z,) = max { w1(xé,V(z1)) ; Wi(xo,z1) > 25, i 2, (;0,k1) € Blky), 2y € A}
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The main purpose of this section is to show that problem (P) is

equivalent to a generalised Mc Kenzie mode]l with state space A and
characteristics we shall next define.

Consider the following correspondence T : A + A

2, » { 2, i ax, i1, (;,k1) € Blkg), Wik, z:) > zg, Vi 2; 2 € A}

Let C = graph T as in part two. Clearly C is closed and convex. Define
v : ¢+ R by

vizg.2p = {le RS 3t 1 2, Gokp e Bk s Wiz > 2, Vi 2)
Proposition III.1
Assume W1, W2 bis, W3, W4 bis, W5, W6 and BO - B8.
T and ¥ are continuous, compact convex valued.
Egggi - it is given in appendix 2.
Q.E.D

Let us next define W : C x R, + R, by

W(ZO,Z1,Z) = max <u1(x,z), x € ?(ZO,Z1)>

We have :

Proposition I11.2

a) W satisfies W1, W2, W3, W4.

b) Let X = Arg max ('w‘(x,z), x € ¥(z,, z1)>

Then if W is differentiable with respect to z,
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= 1
oW _ oW~
5;(10,11,2) = 5;—(x,z)

Proof - It is simple hence omitted.

Q.E.D

By theorem I.1, one can associate with W a unique continuous concave

func~ion U such that

U(z) = “‘30'11' ow 2N
_ i
Where, Vt, Zt = (kt’(zt)i>2)

and E’: (ZO, 21,..., Zt,...) with Zt+l €T (Zt)
We can’now state the main result of this section :
Theorem I11.2
Assume W1, W2 bis, W3, W4 bis, W5, W6 and B0 - BS.
Then problem (P) is equivalent to
(P max U(s) = max W(ZO, 24 v E))
with Zt €T (zt_l) and ZO given.
The value function V(ZO) verifies a generalised Bellman’s équation :
V(zg) = max { Wz, V2 5 2 € Tizg)}

Proof - It can be found in appendix three.

Q.E.D
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111.4 - Examples

We have one consumption good and one capital good and a production

funtion :

X = f(ko) - kI

where f is three times continuously differentiable on [0,=[, f* > 0, f" < 0.

The n agents have recursive preferences defined by n aggregators

Ni : R+ X R+ -+ R+, three times continuously differentiable, which
verify, besides assumption Wi,W2 bis, W3, W4 bis, W5, W6.

W8 : increasing marginal impatience

dx 0z ) 9z 0z
these partial derivatives are evaluated at any constant path (c,ui(c,c...)).
W9 : normality condition
whooawi a?
2 . ax  ox 9z

W' 3
9z Ox

<0

Vi,

Define for i 3 2, x; = Gi(zg,z:) iff zg = Wi(xg,z:). G1 is three times
continuously differentiable, strictly convex, increasing in its first
coordinate, decreasing in the second. In this special case, A ¢ R? and the

mapping T (section III.3) is

Tz ={ 2, ; k, +F 6(z}, 2Dy < Flk)
0 {1 1, 0 % o}
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[t can be checked directly that T has convex compact non empty values

and that graph T has a non empty interior and

i oyl ~ _ i i i
W(ZO, 3y z) = W (f(ko) k1 1§2 G (20,21), z)

One can verify that W satisfies S1 and 52. We have.

Corollary III.1

Under the assumptions mentioned above, every regular interior steady

state is locally stable.

Proof - It has been shown in Benhabib and ali £19851 that every steady

state is a saddle-point, i.e, the linearised Euler’s equation admits at this
point 2n eigenvalues, n of them are inside, the other ones outside the unit
circle. The proof of the “"regularity condition™ can be found in Dana and Le Van
£19871. The conclusion follows from theorem II.3.

Q.E.D

In the model considered, there is one consumption good and two agents.

There is no production and at each date there is an exogeneous supply

of consumption good x. Agents consumptions satisfy xl + x% < x at each date t.

Their preferences are assumed to be Eepresented by aggregators
W' R+ X R+ + R+ which verify Wi, W2 bis, W3, W4 bis, W5, W6, W9 and are

assumed to be twice continuously differentiable.

Let A = 10, u(x)1 with u(x) unique solution of u(x) = w2 (x,u(x)).

Let 2,7 zg and 2, = zf . Define G by x° = 6(24.2,) iff 2y= wz(xz,z,).
3G 3G
Note that 351 < 0 and 3Z0 > 0.
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£
ot

One has in this case T(Z4) = (Zi' G(ZO,Z1) < X >.

snd  W(Zy,2,.2) = W - 62,2, D)

T is compact convex non empty valued and has a graph with non empty
interior. W satisfies W1, W2 bis, W3, W4 and is twice continuously

differentiable.

Corolary 111.2

Under the above assumptions, every obtima] sequence (zi} converges

towards a steady state.

Proof - Let_v denote the value function. By theorem 11.4, it suffices to
show that %%— (ZO,ZI, V(Z1)) is increasing in 11, or equivalently that
0

1
Mzg,2y) = g (X-6(2,2), V(Z1))%%5(ZO,Z1) is decreasing in Z,.

Recall that 7, is solution to max N‘(?—G(ZO,Z),V(Z)) ;

Z
' — = 36
Hence _ Bx (X'G(Zo.li). V(Z1)) 531(Z0,Z1)
V'(Z') = T
M % - 6 ), V(z, )
3z % 7 Blegr &y)h VR

- +

3z 3x°  Ox dz Ox

a2 ! oW ] [ 222 aw? 22
1
3G 86 oW
(2,,2,) = : +
0% " 52, 3z, * O ( aw2)3




)
o

The R.H.S is negative, by W9, and

W |
oG 0z oG 1
since =— = - <5< 0 and a— = —5 >0
s % o’
ox v ox

Q.E.D

Remark 3.1 - In their paper Lucas and Sfokey assume two conditions (besides
the purely technical one s) in order to have a convergence theorem. One is W8
(mar¢inal increasing impatience) the other is W9 (normality condition). We
don’t assume W8 which implies uniqueness of .the steady state and the global

convergence of the model towards the unique steady state.
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Appendix 1

Lemma A.1.

Let G be a continuocus, convex compact valued correspondence form ]fn
into R™. Assume x°€ int G(ko), then there exist a neighbourhood V)

of k° such that for every k in v(x°) . xé

belongs to G(k).

Proof : Let x°€int G(k°) . Then there exists a ball B(xo,o) centered

at x° and with radius p included in ¢(k°) . Since G is lower semi-
continuous, there exists a neighbourhood of k® such that for every k in
V(% , 6 N B, p) #0.

Assume that the conclusion is false. Then there exists a sequence k" ,

k" > k° such that G(k™ N B(x",p) #¢ but x° € G .

Let x* denote the projection of x° on G(™) and let yn bé diametrically
opposed to x° in B(xo,p) , so that X" is also the projection of yn on

‘G(k™ . Then, | %" = x°{=min{ |z - x°||, z€G(™ }>0 as n >,

Thus X" converges to x . On the other hand, let y be a cluster point
of the séquence yn . We have d(y,G(ko))==lim d(yn,G(kn)) 2 P so that
n .

y € G(x°). On the contrary by construction yE€ S(xo, p) € G(k%) a contradiction.
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Lemma A2 - Let [ be the correspondence from RT 1ntq (RT)n defined as
i

n
I x =X }. Then I is compact convex

follows : L(x) = {(xi) e ( RT)",
. i

i
valued and continuous.

Proof T is trivially compact convex valued and has a closed graph.

Let -us show that it is lower semi-continuous : let Q be fixed in RT.'

A

A A
Assume X| = e =Xy = 0 and X141 >0 ... X > 0.

Let (xi) e £(X) de [ x‘ = % . This implies x; =0, Vi, Vh =t...1 .

1

Let Qv — Q. En particular th - 0 for h = 1...1 .

i th i i A
tet 1 < h < 1, define Xh then Xoh 0 and Xoh = %vh

i

Let h 3 1 + 1, then there exist j(h), € > 0 such that x%) €.

. . A A
There exists vo such that v > vo implies vah - xhl < e.

x>

’\j— _A j * s 11_ 1
Let I X3 >0 and for i # j(h), Xh = Xp ¢

A4 .1 LR
Then E Xoh = *uh and X' = X Vi. g
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APPENDIX 2

Proof of Proposition III.l

1. T is compact,convex valued and continuous.

i i n
Let us recall: T : CO €A »{ g€ A (x )iZ 1 ,(x,kl)e B(ko)
and ¥ iz 2, Wl(xl,z;)z z: }

with g, = (ko,(z;) iz 2 )
g, = (e, (2]) iz 2)

It can be easily checked that T is upper semi~continuous with non-empty

convex compact values. We show now that T is lower semi-continuous.

1.1. Suppose T(CO) ={¢ } . In this case T is lower semi-continuous at Co since
1
T is upper semi-continuous with compact values.

1.2.Suppose that there exist gl,c; ,glz ;;, in T(;o).Then one can find x and x'
such that: (i,kl)e B(ko)

(ﬁ',ki)e B(ko)

¥ iz 2, Wl(xl,z}) >zt
o

Wl(x'l,z'})z z '

1.2.1. k1 = ki(and z # zi).
Let o be fixed in JO 1[. From the strict convexity of U(kl)’ one can find
zY(a) in int U(k]) such that:

z?(a)>> z? (= az1+(l- a)zi)

and zY(a ) »> z) when o> 1.

Now, let kz -+ k; and z§+ z, From the continuity of B and Remark III.l,there

: \ v . . s
exist sequences kl,xv, x'", converging respectively to kl,x and x', verifying:

¥ v, &,k e B(k)
AtV .V v
(X ,k 1)6 B(ko).
One has: (iz,kY Ye B(kz) , (recall that x, = ax+(l-a)x' )
and ¥ iz 2, WJ(xi,z"l(a) )y > zi.

From Appendix 1, zY(a)e U(kY) for v large enough.

Summing up, one can say:
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with every @ in 1 0 1[ is associated a v(a) such that, for every vz ~v(a):

WY,z @) > 2V, iz 2
o o
- v
(27,k] e B(k)
24 (o) e UCk)).
. BV
Moreover one can assume that for O<q < o'< 1 , v(@') > v(a). Define zJ=zT(a'J)

. . . v
for v(ad)<v< v(ag+1),{u3}being an increasing sequence converging to 1. z| converges

to Zl.
1.:2.2. k1 # ki.

, . i -
Again, let o be fixed in 1 0 1i[ . There exist sequences (Xt)’ (kl,t)’ (x t),

s — ] = 1 K .
(k;,t)’ with kl,l_kl s k1 1 kl’ and such that:
i i i
zT =0 (xl,x;,..,xt,..)

zi} - Ul(X'T,X';,--o,X't,---)
¥t2l _(ﬁt’kl,t+1) e B(kl,t)
Av
& 1 t+1) € B(kl t)
From B4
50 1 O a
(xt’ kl,t+l)€ B(kl,t)

and from B7 there exist §l(a)> x}a ¥ -with the following property:

LA

(% @, k] “ e B(k“>.

io ia ia

Then, ¥i , %}(a) vl ¥ ( ), %t L) > U (xlu Xy tseaXpsen) 2 2]

2 ye X
Obviously %l(u)e U} .
The strict convexity of U(k?) implies that there exists z?(a) verifying:

" o
zl(a)>> z

Then WJ(xi,z"%(u))> zg , ¥j = 2.

, zY(u)e int U(k?) and z?(u)+ z when o -+ 1,

Now, let 94 o’%o ,k kl’ x’ WX V,converge respectively to k »Z ,k kl,x and x',
verifying: @ k )e B(k )
atV, 1V VU
(x',ki Ye B(ko).

Hence, for v large enough, WJ(XJ:, z"%(d))> Ziv » ¥iz 2,

.

and,by Appendix 1, zY(a)e U(k?a).
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With every o in 10 1[ 1is associated a\)(a) such that ,for any v 2 w(a):

. oy iv
¥i= 2, WJ(xJa,Z"{Kd))> z_

z)(a)e U(kYa)
(@ k)™ € B(k) _ ;
. v v_ . va
Moreover,one can assume a < o' => v(a)< v(a'). Define zl=zY(aJ), k"= k,

. 3 . : . . . . . \)
v(aJ)s v<v(aJ+1);{aJ} being an increasing sequence converging to 1. z) and

converge to zland kl‘
2., ¥ is compact convex valued and continuous.

¥ is obviously upper semi-continuous and compact convex valued. One has
to prove that it is lower semi-continuous.
LAY v v 1
Let (co,cl)e graph T, Lo 7 8o2 &) > ¢y and x'€ W(;o,gl).
i

. i s i,.01 1 .
There exists (x )i 9 such that (x,kl)e B(ko) and W (x ,zl)z z_ s Fix 2.

From B8 and Remark III.l, there exists x'- x such that (ﬁv,kY‘)e B(kz).

2.1. Suppose that xl# O. Assume that x; >0. Assume also that

Wl(xl,zi) > z: for i= 2,..,p< n
and Wl(xl,z}) = z; for i> p.
Define: x"V o= g for 1 =2,..,p
. . . . .
hen Wl(x'lv,z}v)> z"V for v large enough.
For i > p define: "V o= xP s j¥ m
. J ]
yiv . L . . . . .
and x by Wl(x'?v,ziv) - z;v if wl(xlv’zTV)< z:v
SR . e
m m 1 o
Clearly AN . .
m m
Define x']v= gV - 3 xtV
' i=22

then one easily checks that:
@',k = &,k € BKY)
ey 22 w2

x'lvz 0 for v sufficiently large

x'lv > x1 .
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2.2. xl = 0.

Since (CZ,CY)egraph T, there exists x"¥ such that:

Al'\) AY \Y
"7,k )e B(k))

wl(x"l‘,’z}")z z';v , Fiz 2.
Define 'YV = x"V for iz 2
x'lv =0 .
One has: 2V o< g
which implies (ﬁ'v,k¥)e B(kg).

In other words 0 ¢ w(gz,g¥) for every v .

Q.E.D.
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APPENDIX 3

Proof of Theorem III.2

1

Proof - Let Eé, éé be the values of (P) and (P). Obviously %é < EO’ We
=1 !

have just to show that Eé £ 20 . Let x' be an optimal consumption path.

Denote

=1 t,t

_ 1
z, = u (L

(§1 !

x) = MO,z )

With these paths, one can associate a capital path E; and consumption

1

paths 2}, for i » 2 of the other agents. Let 2’, for 1 » 2 denote

EZ =oiat xXH

These paths verify :

vt (Xt, kt+1) € B(kt)

k0 given
for i 2 2 :

=i _ i, =1 =i
z, = W (Xt’ Zt+1) .

One has

—1 1,1 =t = = =1
z, < max W (xo, 21) < W (ZO’ZI'ZI)

(x,k1) € B(ko)

_.-i —
(21)i>1 € U(kl)
By the same way :

-4 == = -
zy ¢ W (11,22,22)
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Since W is non decreasing with respect to z, one gets

Ao 5 w5 o
Zy < W2y, 7). HTy,25,2))

by induction
-1 .5 (5 =1
z; < U ES) £ Zy
Zt+1 €T (Zt)

ZO given
Q.E.D
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