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R E S U M E 

La dynamique en temps réel d'une économie d~pend de la façon dqnt les 
' . 

agents prévoient à tout moment le futur en fonction de leur information sur le 

passé. Ce cadre permet de plus d'incorporer un apprentissage possible des 

agents, Nous montrons qans le cas d'une variable d'état unidimensionnelle que 

sous des conditions minimes sur les fonctions d'anticipations, un cycle donné 

avec anticipations correctes qui est stable dans la dynamique en temps réel est 

stable dans une dynamique fictive avec prévision parfaite dans laquelle le 

temps va décroissant. Nous mettons en évidence une classe de fonctions 

d'anticipations pour laquelie la réciproque est vraie. 
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STABILITY OF CYCLES AND EXPECTATIONS 

* ** Jean-Michel GRANDMONT and Guy LAROQUE 

An important feature of economic systems is that the state of the 

economy at a given date depends in an essential way on the agents' 

expectations about the future. The actual dvnamics followed by the economy 

1s thus determined by the way in which the agents forecast the future as a 

function of their information on the past at every date, while possibly 

learning the structure of their environment. 

In the long run, the economy may converge to a steady state or a cycle 

along which the agents do not make forecasting errors. It is well known however 

that there may exista large number of steady states or cycles with perfect 

foresight. The question studied in the present paper 1s whether one can single 

out those cycles with perfect foresight that are asymptotically stable in the 

actual dynamics, although little is known about the expectations formation 

process. Attention 1s focussed on the simple case in which the state of the 

economy can be described at each date by a real number, as for instance in 

simple versions of the overlapping generations model. 

Cycles with perfect foresight may be alternatively viewed as per1od1c 

trajectories of a fictitious perfect foresight dynamics in which time goes 

backward (a backward perfect foresight Cb.p.f.) dynamics>, the state of 

the economy at t+1 , being by assumption correctly anticipated, determining the 

stat~ at t • We show that under rather general conditions on expectations 

functions, a given cycle with perfect foresight that is stable in the actual 

dynamics is necessarily stable in the b.p.f. dynamics. Simple examples show 

that the converse is not generally true. Yet we exhibit, in a slight 

generalization of Grandmont C8l, a restricted class of expectations functions 

ensuring that all cycles of a given period that are stable in the b.p.f. 

dynamics are also stable in the actual dynamics of the economy. 
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This set of results shows that one should be very cautious when 
interpreting the stability results that one gets from dynamical rational 
expectations models in which time goes forward. Taking into account the 
agents' learning behaviour on the transition path, as one should, may reverse 
the stability diagnosis. That sort of qualitative conclusion is comforted by 
similar Cin spirit) studies of rational expectations macroeconomic models under 
uncertainty CP. Champsaur C3J). 

It remains to be seen if the results of this paper carry over 
qualitatively to more general structures. In particular, it would be important 
to incorporate ''error learning" behaviour as in G. Fuchs C4, 5, 61 and/or to 
extend this type of analysis to a multidimensional framework. 

1. HODEL AND RESUL TS 

An important feature of economic systems is that the agents' forecasts 
of the future influence in an essential way the current state of the economy. 
If we consider the simplest case in which the state of the economy can be 
described by a single real number x, a possible formulation of the phenomenon 
is that the law of motion of the economic system is governed Cin discrete time) 
by 

e 
x = F(x ) ( 1. 1) 

t t+1 

e 
in which x is the current state of the system, x is the state that the 

t t+1 

agents anticipate at date t Cwith subjective certainty) for the nexl date, and 
Fis a map - assumed from now on continuouslv differentiable - from some 
open interval X of the real line into itself. That sort of formulation would 

( 1 ) 
arise for instance in a simple version of the overlapping generations model. 

To describe the evolution of the economy as a dynamical system, i.e. to 
determine the state of the economy at tas a function of the past, we have to 
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e 
specify how the agents form their forecast X 

t+1 
at date t as a function of 

their information at that date. If one assumes that agents do know at date t 

e 
the current and past values of the state variable, the forecast x will be a 

t+1 

funct1on at that date of these variables. ln order to make the analysis 

tractable, we shall focus attention on the simple case in which the forecast 1s 

a fixed function over time of only the T 1mmediate past values of x. This 

yields 

e 
X = ~(X , ••. ,X ) ( 1 • 2) 

t+1 t-1 t-T 

1n which the expectation function ~ - assumed from now on contjnuously 

T (2) 
differentiable - maps the Cartesian product X into X 

Equations (1.1) and (1.2) imply that the dynam1c evolut1on of the 

economy is ruled by the difference equation 

x = W(x , ••• ,x ) ( 1 • 3) 
t t-1 t-T 

T 
in which the temporarY egujlibrium function W = F o ~ maps X into X. 

lt is natural to try to separate in the dynamics (1.3), the relative 

role of the structural behavioural relationship F from that of the 

expectations function. ln order to do that, we define an 1ntertemporal 

eauilibrium with perfect foresight as a double ended infinite sequence (x) 
t 

such that 

x = F(x ) < 1 .4) 
t t+1 

for all t = 0 , ~ 1 , ••.• A oeriodic egujl1brium or a cYcle with oerfect 

foresight, with period k , is then defined as an intertemporal equilibrium 

(x) such that x = x for all t, k being the smallest positive integer 
t t+k t 

having this property. 
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The expectation function ~ is said to detect period kif for every 

.T 
sequence Cx , ••. ,x ) in X that has period k , i.e. that satisfies 

t-1 t-T 

X = X for all relevant j , one has 
t-j-k t-j 

~(x , ... ,x ) = X if k > 2 
t-1 t-T t+1-k = 

= X if k = t-1 

Clearly, ~ detects period k if and only if it detects all periods that divide 

k. Of course, the memory lag T is assumed to be larger than all periods that ~ 

detects. 

It is immediate to see if~ detects period k , any solution (x) 
t 

of (1.3) that has period k is a cycle with perfect foresight, i.e. it is a 

solution of (1.4) with the same period - and conversely. 

Consider a given cycle (x) with perfect foresight, with a period k that 
t 

is detected by the expectation function ~. Our objective is to study the 

stability of this cycle under the dynamics (1.3), and more specifically, to 
relate it to the stability of the same cycle under the simpler but entirely 

fictitious backward perfect foresight (b.p.f.) dvnamics (1.4) induced by 

F • Loosely speaking, this cycle is asvmptoticallv stable in the actual 
dynamics (1.3) - for short W-stable - if when one starts at date O with 
initial values Cx , ••• ,x ) close enough to the cycle, the trajectory defined 

-1 -T 
by (1.3) stays close to the cycle and converge actually toit. A similar 

definition applies to the b.p.f. dynamics of (1.4), in which case we say that 

the cycle is F-stable (precise mathematical definitions will be given in the 
next section). 

We are now in a position to state our main result. 
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THEOREH 1.1. Assume that the exoectation function • detects oeriod 

2k , and let <x > be a cycle with oerfect fores1ght of oeriod k .lf 
t 

the cycle is W-stable. it is F-stable. 

This result shows that given a mild assumption on the expectation 

function, namely that it detects not only period k but also 2k , we should 

focus attention on those cycles of period k that are asymptotically stable in 

the b.p.f. dynamics (1.4). A natural question then arises. Are all F-stable 

cycles of period k also stable in the actual dynamics (1.3)? 

The answer is no, in general. lndeed, consider the simple example where 

Xis the real line, T = 3 and 

$(X ,X ,X>= ex + (1-c) x 
1 2 3 1 3 

Then • detects period 2. Consider now a stationary state, i.e. a fixed point x 

of the map F , that is F-stable, i.e. a= F'Cx) has a modulus less than 1. 

Linearizing (1.3) at the stationary state, we get the characterist1c equation 

3 2 
A - a(cA + 1 - c) = 0 · 

W-stability means that all roots of this equation lie w1th1n the unit circle. 

Note that for c = -3 and a= 1 , A= -2 is a solution. Thus, when c = -3 and a 

1s less but close to 1 , the stationary state is F-stable but W-unstable. 

We exhib1t below CTheorem 5.1), in a slight generalization of Grandmont 

C8, Proposition 3.21, a restricted class of expectations functions for which 

all cycles of a given period k that are F-stable are also W-stable. To predict 

x , these expectations fu~ctions form essentially locally an average of all 
t+1 

past k-th observations, i.e. of x , x , ••• , and thus neglect 
t+1-k t+1-2k 

1ntermediate data. Moreover, the weights have to ver1fy a number of 

restrictions - which will be in particular satisfied if all weights are 

nonnegat1ve. 
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The paper 1s organized as follows. Section 2 defines precisely the 
notion of stability of a cycle. Section 3 describes the properties of the 
expectations funct1ons that preserve cycles of a given period. The main 
Theorem 1s proved in Section 4. finally, Section 5 descr1bes a class of 
expectat1ons functions ensuring that all f-stable cycles of a given period are 
also W-stable. 

2. STABILITY OF A CYCLE 

Consider a cycle with perfect foresight Cx) of a period k that is 
t 

* * detected by ~. Let x 
1 

I • • • I x be the k consecutive values taken by the state 
k 

* * variable along the cycle (1.e. 1ts period1c orbit), with x = f(x ) for 
s s+1 

* * s = 1, .•. ,k-1 and x = f(x) • We wish to define the stability of this 
1 k 

cycle first in the b.p.f. dynamics (1.4) and then in the actual dynamics 
(1.3). 

* Each x 
s 

* is a fixed point of the k-th iterate of F , x 
s 

k * 
= F Cx) and 

s 
* j * (3) 

x ~ F Cx) for j = 1, ..• , k-1 • We say that the cycle is F-stable if the 
s s 

k * absolute value of the derivative of F , evaluated at x , is· less than unity, 
s 

k * 
i.e. 1 OF C x ) 1 < 1 • If we set for each i = 1 , ..• , k 

s 

* a =F'Cx ) 
s s+1 

we obta1n from the chain rule of differentiation 

k * 
OF (x) = a 

s 1 
a 

k 

C 2. 1 ) 

(2.2) 

and we see that the stability condition la •.. a 1 < 1 is independent of the 
1 k 
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* particular point x chosen on the periodic orbit. 
s 

We turn now to the definition of W-stability. First note that (1.3) 
T ~ 

determines a difference equation from X into itself through the map W that 
T 

associates to any member Q = (x , ••• ,x > of X the element 
t t-1 t-T 

Qt+t = (W(x , ••• ,x > , x , .•• ,x > 
t-1 t-T t-1 t-T+1 

Clearly, the cycle is a periodic solution of (1.3) if and only if, for all 

* * * * s = 1, ••• ,k , q = 
s 

(x , ••• ,x ,x , .•• ) is a fixed point of the k-th iterate 
s-1 1 k 

~ 

of W, i.e. 

the cycle (x) 
t 

* evaluated at Q 
s 

* ~k * * ~j * Q = W (q) and Q # W (q > for j = 1, ••• ,k-1 • By definition, 
s s s s 

~k 
is W-stable if all eigenvalues of the Jacobian matrix of W 

~k * 
, i.e. DW (q > , have a modulus less than 1 • Here again, the 

s 

definition does not depend upon the particular point chosen on the periodic 

~k * ~k * orbit, for the Jacobian matrices DW (q > and, say, DW (q) , have the same 
s 1 

(4) 
eigenvalues 

The remainder of this section looks for a convenient way to find the 

~k * 
eigenvales of DW (q) , in terms of the function'F and the expectations 

1 
function •. 

~k * 
From the chain rule of differentiation applied to W (q) 

1 
~k ~ 

~ ~k-1 * 
= WCW (q )) 

1 

one gets that DW (q) is the product of the Jacobian matrix of W evaluated at 
1 

* the different Q = s = 1, ••. ,k 
s 

~k * 
DW Cq > = 

1 

~ * 
DWCq > 

k 

~ * 
DWCq > 

1 
(2.3) 
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~k * 
The eigenvalues À of DW Cq) are therefore the solutions of the equation, in 

1 
matrix notation 

~ * ~ * CDW(q ) •.• DW(q }] V= ÀV 
k 1 

(2.4) 

in which v # 0 is an eigenvector. 

For every s = 1, ••• ,k , and h = 1, ••• ,T, let 

s * * * 
C = ··(x , ... ,X ,X, ••• ) 
h h s-1 1 k 

(2.5) 

be the partial derivative of• with respect to x , evaluated at the point 
t-h 

* q (if k = 1 , we drop the superscript and write simply c) • In view of the 
s h 

~ * 
fact that W = F o •, for every T-dimensional vector y, the vector u = DW(q )y 

s 
is, with this notation, given by 

T s 
u = a [ ch Yh (2.6) 

1 s h=1 

u = yh-1 for h = 2, ••. ,T . 
h 

For every h > 2, the component u is equal to the lagged component 
h 

yh-l • When applied successively k times, this fact yields that the equation 

corresponding to the h-th row of (2.4) 1s for h = k+1, •.• ,T 

V = ÀV (2.7) 
h-k h 

On the other hand, it is easily seen from (2.6) that the k-th row of (2.4) 

reads 

T 
a r C V = ÀV (2.8) 

1 h=1 h h k 
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As for the Ck-1)-th row, 1t y1elds 

2 T 1 T 2 
a c Ca [ C V ) + a [ C V = À V 
2 1 1 1 h h 2 2 h h-1 k-1 

which can be rewritten by us1ng (2.8) 

T 2 
a [ C V = ÀV 
2 1 h h-1 k-1 

(2.9) 

provided that v is generated by using (2.7) for h = k , i.e. v = ÀV • 
0 0 k 

Pursuing recurs1vely along this line, one finds finally that the equation 

corresponding to the row Ck+1-s) in (2.4) , fors= 1, ••• ,k , is given by 

T 
a r 

s 1 

s 
C V 
h h+1-s 

: V 
1-s 

(2.10) 

in which v , .•• ,v are obtained from the components of the eigenvector v 
0 1-k 

through (2.7) , for h = 1, ••. ,k • 

To sum up, solving (2.4) for À and vis equivalent to find À and 

v , ••. ,v ,v , .•• ,v that satisfy (2.7) for h = 1, •.. ,T and (2.10) for 
1-k o 1 T 

s = 1, ••• ,k • This formulation makes clear what is actually done when solving 

(2.4) for À and v. One "linearizes" first the dynamics (1.3) around each point 

* ~ * q : this is represented by the Jacobian matrix DWCq) and by equation (2.10). 
s s 

A complete linearized dynam1cs around the cycle is obtained by assuming that 

each linearized dynamics (2.10) is "visited" consecutively from s = 1 to s = k, 
and periodically, with period k • Then one looks for solutions of this complete 
linearized dynamical system that grow at the (possibly complex) rate À-1 every 
k periods (this is equation (2.7)), the eigenvector v being interpreted as the 

initial position of the solution. 
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If we are looking for solutions of (2.7), (2.10) such that À~ 0 , we 
may without loss of generality choose ta work with the unknowns À and 
v , ••• ,v alone, since the other values v through v can then be obtained by 

1-k o 1 T 
using (2.7). It is now not d1ff1cult ta verify that w1th these unknowns, the 
system (2.10) becomes 

1 1 1 
[ 1 - a \ (À)) V a 

\-1 
(À) V 

1 0 1 -1 
a l (À) V = 0 

1 1 1-k 

2 2 2 
- a l 1 (À) V + C1-a l (À)) V 

2 0 2 k -1 a2 1/À> V = 0 
1-k 

k k k 
- a Àl (À) v - a À 1 (À) v 

k-1 o k k-2 -1 
+(1-a l (À)] V : 0 

k k 1-k 

in which for every r,s = 1, ••. ,k 

s s -h 
1 <À> = r 
r h~ 1 

C À 
(h-1)k+r 

(if k = 1 , we write simply 1(À)) 

This system has a solution if and only if the determinant of the 
matrix composed of its coefficients, say Q(À), 1s zero.Thus the eiaenvalu~s 

:isk * 
À of the Jacobian matrix DW <a> such that h, O are the solutions of the 

eguatjon O<à> = 0. It follows that the cycle <x > is W-stable if and 
t 

only if these solutions verify IÀI < 1 • We have therefore proved: 

PROPOSITION 2.1. Consider a cYcle <x > with perfect fores1ght, with 
t 

a period k that is detected by the exoectat1on funct1on. Let 

* * * <x , ••• ,x > be the per1od1c orb1t, with x = 
1 k s 

* F(x > 
s+1 
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The cvcle 1s W-stable if and onlv if the solutions of 

all lie 1nside the unit c1rcle of the complex plane. where 

1) Ais the diagonal matrix 

2> rCÀ) 1s the matrix 

k 
À l (À 

k-1 

with. fors= 1, ••• ,k .fillQ h = 1, ••• ,T 

s * * * 
C = ~'(x , ••• ,X ,X, ••• ) 
h h s-1 1 k 

and for r,s = 1, ••• ,k 

s s -h 
l (À) = [ 
r h>1 

C À 
Ch-1)k+r 

3. DETECTING CYCLES 

* a =F'Cx ) 
s s+1 

The foregoing proposition shows how the local properties of the b.p.f. 

dynamics F and of the expectation function ~ 1nteract in a neighborhood of a 
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cycle - through the matrices A and reÀ) , respectively - as far as W

stab1lity 1s concerned. Up to now, we have not fully explo1ted the fact that 

the expectat1ons functions detects period k • It turns out that this property 
imposes strong restrictions on the behaviour of reÀ) on the unit circle, which 

will be crucial for our main result. 

T 
LEHHA 3.1. W x = ex , ••• ,x > be a seauence in X that has 

1 T 

period k. Let c = •·<x , ••• ,x > for h = 1, •.• ,T and define 
h h 1 T 

for everv comolex number À# o 

Then if• detects pec..!Qg k 

-h 
: [ C À 

h h 

2wid/k 
y(À) = À libm À= e , ill d = 1, ••• ,k (3.1) 

Proof: Let z = (z , ••• ,z) be a real vector with period k • If the real µ 
1 T 

T 
is small enough, x + µz belongs to X • If t detects period k 

t<x + µz) = •<x> + µ f(z) 

in which fez)= z if k > 2 and z otherwise. Next, there exists µ in CO,µJ 
k-1 1 

such that 

in which case 

•<x + µz) - t<x> = µ r •·ex+ µz) zh 
h h 

r •·ex+ µz) z = fez> 
h h h 

Letting µ go to O yields 

r c z = f<z> 
h h h 
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The result follows by applying this relation to z = (cos 21r dh/k) and to 

z = (sin 21r dh/k) , for d = 1, ••• ,k • Q.E.D. 

The next fact states the implications of the previous lemma for the 

s 
expressions 1 (À) appearing in Proposition 2.1, in the relevant case k) 2. 

r 

LEHHA 3.2. W x and l<À> be as in Lemma 3.1. with k) 2. 

Define for r = 1, ••• ,k , and everv complex number À# O 
-h 

l (À): [ C À 
r h)1 (h-1 )k+r 

Then if• detects oerjod nk , n) 1 

1 (À)= 0 for r # k - and l (À)= 1 
r k-1 

2w1d/n . 
~À= e , ill d = 1, .•• ,n. 

Proof The f1rst step of the proof 1s to remark that 

k-r k k r 
k À l (À ) = [ w l (Àw ) 

r u=1 u u 

211'1u/k 
in which w = e • lndeed, the right hand of (3.3) is 

u 
k -h r-h 
[ [ C À W 

u=1 h h u 

k r-h 

(3.2) 

equal to 

But [ w is equal to k if r = k (modulo k) and to O otherwise. Thus 
u=1 u 

k r 
[ w l(Àw) 

u=1 u u 

Rewrite (3.3) as 

= k .[ C 
h)1 Ch-1)k+r 

k-r k 
= k À l (À ) 

r 

-(h-1)k-r 
À 

(3.3) 
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Ck-r)/k k r 1/k 
k À y CÀ>= r w yCÀ w > 

r u=1 u u 
2 .. 1d/n 

and assume that • detects period nk • Let À= e for some d = 1, ••• ,n. 
1/k nk 

Then (À w) = 1 and thus from Lemma 3.1 Capplied to per1od nk) 
u 

1/k 1/k 
y(À w) = À w 

u u 

One gets therefore for such a À 
Ck-1-r)/k k r+1 

k À y <À>= r w 
r u=1 u 

The result follows from the fact that the right hand of the last equality 1s 

equal to k when r = k - 1 , and to O otherwise. Q.E.D. 

Remark 3,3. It can be shown that if• 1s linear, then (3.1) (resp. 

(3.2)) is a necessary And suffic1ent condition for• to detect per1od k 
Cresp. nk) • 

4. PROOF OF THEOREII 1. 1 

We are now in a position to prove our main result. Lemmas 3.1 and 3.2 

yield the following important information concerning the value of Q{À) in 
Proposition 2.1 when the expectation function detects period nk , n) 1 , and 
for À equal to a complex n-th root of unity. 

LEHHA 4. 1. Assume in Proposition 2.1 ~ • detects oeriod 
nk , n > 1 • Ihfill 

21'1d/n 
for À= e , d = 1, ••• ,n. 
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* 
Proof: If k = 1 , the cycle is actually a fixed point x of F • The matrix 

* A reduces to the single number a= F'Cx) , while rCA) reduces toits top left 

element y(A) • Thus 

The result follows in that case by applying Lemma 3.1 to the period n. 

If k) 2 , the result is a direct consequence of Lemma 3.2. It suffices 

2w1d/n 
indeed ta remark that when A= e the matrix I - ArCA) becomes 

- a O 0 
1 

0 - a 0 
2 

.......................... 
0 

- À a 
k 

0 

0 

0 

0 

- a 
k-1 

1 

Q.E.D. 

Theorem 1.1 , which asserts that W-stability implies F-stability of a 

cycle with perfect foresight of period k whenever the expectation function 

detects period 2k , becomes now a simple consequence of Proposition 2.1 and of 

the previous Lemma. Indeed, 

PROPOSITION 4.2. Under the assumptions of Proposition 2.1, let 

a= a ••. a . Then 
1 k 

1) 1f a= 1 , llin QC1) = 0 • 1f a> 1 , then there 

exists a real number À> 1 such that QCA) = O • 

2) Assume that ~ detects 2k • Then QC-1) = 0 when a= -1 • 

· 1f a< -1 , then there exjsts a real number À< -1 such 
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Proof : First remark that, from Lemma 4.1, QC1) = 1-a. Thus QC1) = 0 
1f a= 1 • Now if a> 1 , then QC1) < 0. But if>. is real, QC>.) is real and 
tends to 1 when >. diverges to + • Call elements of rC>.) tend to 0) • Thus if 
a> 1 , there exists by cont1nuity a real number >. > 1 such that Q(>.) = 0. 

The argument is similar when t1J detects period 2k • From Lemma 4.1 , 
we have then QC-1) = 1 +a. Thus QC-1) = 0 when a= - 1 • If a< - 1 , one has 
QC-1) < 0 , and by the same continuity argument as before, there is a real 
number >. < - 1 such that QC>.) = 0 . Q.E.D. 

Proposition 4.2 establishes indeed the validity of Theorem 1.1. If the 
expectation function detects period 2k , and if a cycle with perfect foresight 
of period k is W-stable, then from Proposition 2.1, all solutions of QC>.) = 0 
must lie inside the unit circle of the complex plane. Proposition 4.2 impl1es 
that one must have la ••• a 1 < 1 in such a case. This 1s precisely the 1 k 

definition of F-stability. 

5. A RESTRICTED CLASS OF EXPECTATIONS FUNCTIONS 

Theorem 1.1 states that if t1J detects period 2k, any cycle of period k 
that is W-stable is F-stable. The example given in the introduction shows that 
the converse is not generally true. This indicates that one needs much more 
stringent conditions on the expectation function - specifically, on the 
behaviour of the matrix rC>.) appearing in Proposition 2.1 on the unit circle -
to guarantee that F-stability leads to W-stability. A set of such conditions is 
provided by the following 

THEDREH 5. 1. W Cxt> be a cycle satisfying the conditions of 

Proposition 2.1. 

1) If k = 1 , Jet a) 1 be the maximum of jyC>.)I on the 
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unit cfrcle. Then the stationary state is W-stable if 
1 - lal a> 0. In partfcular when a= 1 , F-stability 
implies W-stability. 

s 
2> lf k > 2, assume y (À)= 0 for r # k - 1 and 

r 
s 

IÀI = 1 , and let a > 1 b~ the maximum of IY (À)I .Q!l 
s k-1 

the unit circle. fors= 1 , •.• , k • Then the cycle fs 
W-stable if 1 - la ..• a I Ca .•. a) > 0 • In particular if 

1 k 1 k 

a = 1 for all s , F-stabilitv implies W-stability. 
s 

* * Proof : Consider first the case of a fixed point x of F , with a= F'(x ). 
Applying Proposition 2.1, we get the equation 

Let a be the maximum of IY(À)I for fÀI = 1 • One has a) since y(1) = 
<Lemma 3.1) • Remark next that Q(À) = 1 when a= 0 , and thus that all 

~ * 
eigenvalues of DW(q) are O. Note also that these eigenvalues vary 
continuously with the parameter a. Suppose now that 1) is false, i.e. that 
there is some a with 1 - fal a> 0 such that the corresponding equation 
Q(À) = 0 has a root with IÀI > 1 . In that case, there must exista in 
(0,al such that the associated equation Q(À) = 0 has a root X on the unit 
circle. One gets then 

ly<X>I = 1/lal > 1/lal > a 

a contradiction. If a= 1 , it is clear that F-stability <lal < 1) implies 
W-stability. 

The case k) 2 1s dealt with by a similar argument. Under the assumption 
of 2), by a reasoning analogous to the proof of Lemma 4.1, one gets 
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1 
Q(À) = 1 - Ca ••• a) À y (À) 

1 k k-1 

The remainder of the proof is the same as in the case k = 1 , by a cont1nuity 
argument on the vector Ca , ••• ,a) . Q.E.D. 

1 k 

s It should be noted that when k ~ 2 , the assumption y (À)= 0 when 
r 

IÀI = for r # k - 1 means that all the corresponding coeffjcjents 
s 

c , h ~ 1 are egual to zero. This condition is thus very (h-t)k+r 

restrictive. It says that locally, the expectations function is an average of 
every k-th past observation. Theorem 5.1 above states in effect sufficient 
conditions of the weights ensuring that F-stability implies W-stability. 

s Remark 5.2. If all the coefficients of y(À) when k = 1 , of y (À) 
k-1 

otherwise, have the same sign, they must be all nonnegative and sum 

ta one since y(1) 
s = 1 or y (1) = 
k-1 

s 

1 from Lemma 3.1 or 3.2. One has clearly 

then jy(À)I < 1 or IY (À)I < 1 on the unit circle, and F-stability implies k-1 
W-stability. The result had been proved in this particular case by a different 
technique in Grandmont [8, Proposition 3.21. 
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FOOTNOTES 

* CEPREMAP, 142, rue du Chevaleret, 75013 PARIS. 
** INSEE, 18, Boulevard Adolphe Pinard, 75675 PARIS CEDEX 14. 

1. For details, see J. Geanakoplos and H. Polemarchakis C71, Grandmont C81, 
M. Woodford C91. 

2. The restrictions to a fixed expectation function, and a fixed (and 
fin1te) memory lag Tare there to enable us to deal with an autonomous 
Ctime independent), fin1te dimensional dynam1cal system. The assumption 
that, does not depend on the current state x is made for simplicity to 

t 
avoid having to solve (1.1) {1.2) for x in order to derive (1.3) below. 

t 
The main results of the paper are preserved under a slight perturbation 
of the expectation function. They are thus still valid - provided that 
C 1. 1) C 1. 2) can be sol ved uni que ly for x - if , does not depend "too 

t 
much" of the current state variable x , a condition that is fami l iar in 

t temporary equilibrium analysis. 
3. The iterates of a function f from a set into itself are defined 

1 j j-1 
recursively by f = f, f = f of . 

=1:k * =1: =1:k-1 * 4. From the chain rule of differentiation applied to W Cq) = WCW (q )) , 
i i 

=1:k * 'Il one gets that DW (q) is the product of the Jacobian matrix of W 
i 

* * evaluated at each point q , ••• ,q , 
1 k 

~k * ~ * ~ * ~ * DW Cq > = DWCq > ... DWCq > DWCq) 
i i-1 1 k 

~ * 
DWCq > 

i 

The statement follows then from the fact that for any two square 
matrices A and B with the same dimensions, the products AB and BA have 
the same eigenvalues. 
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