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ABSTRACT
Grandmont, Jean-Michel ; Laroque, Guy — Stabi]ity of Cycles and Expectations

The actual dynamics of an economy depends on how agents forecast the
future at every date as a function of their information on the past, while
possibly learning the structure of their environment. We show in the case of a
onedimensional state variable that under mild conditions on expectations ‘
functions, a given cycle with perfect foresight that is stable in the actual
dynamics is stable in a fictitious backward perfect foresight dynamics. We
exhibit a restricted class of expectations functions for which the converse is
true. J. Econ. Theory, 1986, , PP. , (English). Grandmont:
CEPREMAP, Paris ; Laroque : INSEE, Paris.

Journal of Economic Literature Classification Numbers : 021, 022,
023, 131

RESUME

La dynamique en temps réel d’une économie dépend de la facon dont les
agents prévoient a tout moment le futur en fonction de leur information sur le
passé. Ce cadre permet de plus d’incorporer un apprentissage possible des
agents. Nous montrons dans le cas d’une variable d’état unidimensionnelle que
sous des conditions minimes sur les fonctions d‘anticipations, un cycle donné
avec anticipations correctes qui est stable dans la dynamique en temps réel est
stable dans une dynamique fictive avec prévision parfaite dans Taquelle le
temps va décroissant. Nous mettons en évidence une classe de fonctions

d’anticipations pour laguelie la réciproque est vraie.
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STABILITY OF CYCLES AND EXPECTATIONS

x X%
Jean-Michel GRANDMONT and Guy LAROQUE

An important feature of economic systems is that the state of the
economy at a given date depends in an essential way on the agents’
expectations about the future. The actual dynamics followed by the economy
is thus determined by the way in which the agents forecast the future as a
function of their information on the past at every date, while possibly
learning the structure of their environment.

- In the long run, the economy may converge to a steady state or a cycle
along which the agents do not make forecasting errors. It is well known however
that there may exist a large number of steady states or cycles with perfect
foresight. The question studied in the present paper is whether one can single
out those cycles with perfect foresight that are asymptotically stable in the
actual dynamics, although 1ittle is known about the expectations formation
process. Attention is focussed on the simple case in which the state of the
economy can be described at each date by a real number, as for instance in

simple versions of the overlapping generations model.

Cycles with perfect foresight may be alternatively viewed as periodic
trajectories of a fictitious perfect foresight dynamics in which time goes
backward (a backward perfect foresiaht (b.p.f.) dynamics), the state of
the economy at t+1 , being by assumption correctly anticipated, determining the
state at t . We show that under rather general conditions on expectations
functions, a given cycle with perfect foresight that is stable in the actual
dynamics is necessarily stable in the b.p.f. dynamics. Simple examples show
that the converse is not generally true. Yet we exhibit, in a slight
generalization of Grandmont (81, a restricted class of expectations functions
ensuring that all cycles of a given period that are stable in the b.p.f.
dynamics are also stable in the actual dynamics of the economy.



This set of results shows that one should be very cautious when
interpreting the stability results that one gets from dynamical rational
expectations models in which time goes forward. Taking into account the
agents’ learning behaviour on the transition path, as one should, may reverse
the stability diagnosis. That sort of qualitative conclusion is comforted by
similar (in spirit) studies of rational expectations macroeconomic models under

uncertainty (P. Champsaur [31).

It remains to be seen if the results of this paper carry over
qualitatively to more general structures. In particular, it would be important
to incorporate "error learning” behaviour as in G. Fuchs [4, 5, 61 and/or to

extend this type of analysis to a multidimensional framework.

1. MODEL AND RESULTS

An important feature of economic systems is that the agents’ forecasts
of the future influence in an essential way the current state of the economy.
If we consider the simplest case in which the state of the economy can be
described by a single real number x , a possible formulation of the phenomenon
is that the law of motion of the economic system is governed (in discrete time)

by

e
x = Flx ) (1.1)
t t+1

e
in which x 1is the current state of the system, xt , is the state that the
+

agents anticipate at date t (with subjective certainty) for the next date, and
F is a map — assumed from now on continuously differentiable — from some

open interval X of the real line into itself. That sort of formulation would

(1
arise for instance in a simple version of the overlapping generations model.

To describe the evolution of the economy as a dynamical system, i.e. to

determine the state of the economy at t as a function of the past, we have to
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. v
specify how the agents form their forecast xt | at date t as a function of
+

their information at that date. If one assumes that agents do know at date t
e
the current and past values of the state variable, the forecast xt | will be a
' +

function at that date of these variables. In order to make the analysis
tractable, we shall focus attention on the simple case in which the forecast is
a fixed function over time of only the T immediate past values of x . This

yields

e
X - Ib()(

yeeesX ) (1.2)
t+1

-1 t-T

in which the expectation function $ — assumed from now on continuously

T (2)
differentiable — maps the Cartesian product X into X
Equations (1.1) and (1.2) imply that the dynamic evolution of the

economy is ruled by the difference equation

x = Wix yeee X ) . (1.3)
t t-1 t-T

: T
in which the temporary equilibrium function W = F o ¥ maps X into X .

It is natural to try to separate in the dynamics (1.3), the relative
role of the structural behavioural relationship F from that of the
expectations function. In order to do that, we define an intertemporal

equilibrium with perfect foresight as a double ended infinite sequence (xt)
such that '

x = Flx ) | | (1.4)
t t+1

for allt =0, + 1 ,... . Aperiodic equilibrium or a c cle with perfect
foresight, with period k , is then defined as an intertemporal equilibrium

(xt) such that xt v = xt for all t , k being the smallest positive integer
+

having this property.



The expectation function ¢ is said to detect period k if for every

T
sequence (xt ‘,...,xt T) in X that has period k , i.e. that satisfies
X = X for all relevant j , one has
t-j-k t-J
bix  ,...,x ) = x if k> 2
t-1 t-T t+1-k =
= x if k = 1
t-1

Clearly, ¢ detects period k if and only if it detects all periods that divide
k. Of course, the memory lag T is assumed to be larger than all periods that ¢
detects.

It is immediate to see if ¢ detects period k , any solution (xt)

of (1.3) that has period k is a cycle with perfect foresight, i.e. it is a
solution of (1.4) with the same period — and conversely.

Consider a given cycle (§t) with perfect foresight, with a period k that

is detected by the expectation function ¢ . Our objective is to study the
stability of this cycle under the dynamics (1.3), and more specifically, to
relate it to the stability of the same cycle under the simpler but entirely
fictitious backward perfect foresight (b.p.f.) dynamics (1.4) induced by

F . Loosely speaking, this cycle is asymptotically stable in the actual
dynamics (1.3) — for short W-stable — if when one starts at date 0 with
initial values (x 1,...,x_T) close enough to the cycle, the trajectory defined

by (1.3) stays close to the cycle and converge actually to it. A similar
definition applies to the b.p.f. dynamics of (1.4), in which case we say that
the cycle is F-stable (precise mathematical definitions will be given in the

next section).

We are now in a position to state our main result.



5

THEOREM 1.1. Assume that the expectation function ¥ detects period
2k , and let (§t) be a_cycle with perfect foresight of period k .If

he le is W-stable. it is F-stable.

This result shows that given a mild assumption on the expectation
function, namely that it detects not only period k but also 2k , we should
focus attention on those cycles of period k that are asymptotically stable in
the b.p.f. dynamics (1.4). A natural question then arises. Are all F-stable
cycles of period k also stable in the actual dynamics (1.3) ?

The answer is no, in general. Indeed, consider the simple example where
X {is the real line, T = 3 and

w(xi,xz,xB) = cx1 + (1-¢c) x3

Then ¢ detects period 2 . Consider now a stationary state, i.e. a fixed point x
of the map F , that is F-stable, i.e. a = F’(x) has a modulus less than 1.
Linearizing (1.3) at the stationary state, we get the characteristic equation

3 2
A ~aleh +1-¢)=0

W-stability means that all roots of this equation lie within the unit circle.
Note that for c = -3 anda =1, A = -2 is a solution. Thus, when ¢ = -3 and a
is less but close to 1 , the stationary state is F-stable but W-unstable.

We exhibit below (Theorem 5.1), in a slight generalization of Grandmont
(8, Proposition 3.21, a restricted class of expectations functions for which
all cycles of a given period k that are F-stable are also Ufstable. To predict

xt y these expectations functions form essentially locally an average of all
+

past k-th observations, i.e. of x ,..., and thus neglect

tel-k | te1-2k
intermediate data. Moreover, the weights have to verify a number of
restrictions — which will be in particular satisfied if all weights are

nonnegative.
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The paper is organized as follows. Section 2 defines precisely the
notion of stability of a cycle. Section 3 describes the properties of the
expectations functions that preserve cycles of a given period. The main
Theorem is proved in Section 4. Finally, Section 5 describes a class of
expectations functions ensuring that all F-stable cycles of a given period are

also W-stable.

2. STABILITY OF A CYCLE
Consider a cycle with perfect foresight (Yt) of a period k that is
* x
detected by ¢ . Let x1 sosesy xk be the k consecutive values taken by the state

. x *
variable along the cycle (i.e. its periodic orbit), with x = F(x l) for
s S+
X

X
s=1,...,k-1 and x1 = F(xk) . We wish to define the stability of this

cycle first in the b.p.f. dynamics (1.4) and then in the actual dynamics
(1.3).

* * k x
Each x 1is a fixed point of the k-th iterate of F , x = F (x ) and

s s 3
* i % (3)
X # FJ(x ) for 3= 1,..., k-1 . We say that the cycle is F-stable if the
s s
k x :
absolute value of the derivative of F , evaluated at x , is less than unity,
s
k x
j.e. |DF (x )] <1 . If we set for each i = 1,...,k
s
X
a = F'(x ) (2.1)
s s+
we obtain from the chain rule of differentiation
k =
DF {(x ) =a ... a (2.2)
s 1 k

and we see that the stability condition la' v akl ¢ 1 is independent of the



x
particular point x chosen on the periodic orbit.
s

We turn now to the definition of W-stability. First note that (1.3)
T x
determines a difference equation from X into itself through the map W that

T
associates to any member qt = (xt ',...,xt T) of X the element

q = (W(x S S
t+1 t-1 t-T

) L4

govey

X
t-1 t-T+1

Clearly, the cycle is a periodic solution of (1.3) if and only if, for all

*x x * *
s=1,...,k , g = (x ',...,xl,xk,...) is a fixed point of the k-th jterate
s s- _
x x =k * x =3 %
of W, +t.e. qQ =W(g)andg #W (q) for j=1,...,k-1 . By definition,
s s s s

=k
the cycle (?t) is W-stable if all eigenvalues of the Jacobian matrix of W
* xk %
evaluated at q , 1.e. DW (q ) , have a modulus less than | . Here again, the
s s

definition does not depend upon the particular point chosen on the periodic

k x k =%
orbit, for the Jacobian matrices Da (g ) and, say, Da (ql) , have the same
s

: (4)
eigenvalues .

The remainder of this section looks for a convenient way to find the

sk % ,
eigenvales of DW (qi) , in terms of the function F and the expectations

function ¢ .

- xk % ~ sk-1 =
From the chain rule of differentiation applied to W (q') = WW (q1)) s
k
one gets that Da (ql) is the product of the Jacobian matrix of ﬁ evaluated at

X
the different q =s =1,...,k
s

=k % PR § ¥ X
DW (qi) = DW(qk) oo DW(q1) (2.3)



k =«
The eigenvalues A of oﬁ (qi) are therefore the solutions of the equation, in

matrix notation
- } 4 £ X
[DW(qk)...DN(qi)l Vv = AV (2.4)

in which v # 0 is an eigenvector.

For every s = 1,...,k ,and h=1,...,T, let
s x S
c = ¢ (x soee s X X Leee) (2.5)
h h s-i 1k

be the partial derivative of ¢ with respect to xt b evaluated at the point
*

q (if k = 1 , we drop the superscript and write simply ch) . In view of the
s

X x
fact that W = F o ¢ , for every T-dimensional vector y , the vector u = DW(q )y
s
is, with this notation, given by

T s
u =a L[ c vy (2.6)
1 s h=t h h

u =y for h =2,...,T .
h h-1

For every h > 2 , the component uh is equal to the lagged component
yh , When applied successively k times, this fact yields that the equation
cofresponding to the h-th row of (2.4) is for h = k+1,...,T

v = AV (2.7)
h-k h

On the other hand, it is easily seen from (2.6) that the k-th row of (2.4)
reads

V. T AV (2.8)



As for the (k-1)-th row, it yields

2 T 1 T 2
a cf{a I ¢c v)+a I ¢ v = AV
2 1 1 1 h h 2 2 h h-t k-1
which can be rewritten by using (2.8)
T 2
~a L ¢ v = AV (2.9)

2 1 h h-t k-1

provided that v is generated by using (2.7) for h = k , 1.e. v = Avk .
) 0

Pursuing recursively along this 1ine, one finds finally that the equation
corresponding to the row (k+1-s) in (2.4) , for s = 1,...,k , is given by

T s
a [l c v v (2.10)
s 1 h bh+l-s 1-s

in which v ,...,vI ‘ are obtained from the components of the efgenvector v
0 -

through (2.7) , for h =1,...,k .

To sum up, solving (2.4) for A and v is equivalent to find A and

v1 k,...,v ,vi,...,vT that satisfy (2.7) for h = 1,...,T and (2.10) for
- 0

s=1,...,k . This formulation makes clear what is actually done when solving
(2.4) for A and v . One "linearizes” first the dynamics (1.3) around each point
* ) x %
q : this is represented by the Jacobian matrix DW(q ) and by equation (2.10).
s s
A complete linearized dynamics around the cycle is obtained by assuming that
~each linearized dynamics (2.10) is "visited” consecutively from s = 1 to s = k,
and periodically, with period k . Then one looks for solutions of this complete
linearized dynamical system that grow at the (possibly complex) rate A-1 every
k periods (this is equation (2.7)), the eigenvector v being interpreted as the
initial position of the solution.
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If we are looking for solutions of (2.7), (2.10) such that A # 0 , we

may without loss of generality choose to work with the unknowns A and

v1 k,...,v alone, since the other values v1 through vT can then be obtained by
- 0

using (2.7). It is now not difficult to verify that with these unknowns, the
system (2.10) becomes :

1 1 1
{1 - a (M1 v - a (N v ..., -~ a (a\) =0
y Tk o M1 k-1 Vo 1 Vi-k
2(A) | [1 2(A)] 2(A) 0
- a +[1-a vy (NI v ..... - =
2 My Yo % Y Vo 8 7y Yi-k
k k k
- a Ay (M) v -a Ay (A) V. teees +H1-a vy (A)1 v =0
k-1 0 k k-2 -1 k k 1-k
in which for every r,s = {,...,k .
s 3 -h
y(A) = T ¢ A
r h31  (h-1)k+r

(if k = 1 , we write simply y(A)) .

This system has a solution if and only if the determinant of the
matrix composed of its coefficients, say Q(A), is zero.Thus the eigenvalues

xk %

A of the Jacobian matrix DW (g ) such that A # 0 are the solutions of the

(A) = 0 . It follows that the cycle (?t) is W-stable if and

only if these solutions verify |A] < 1 . We have therefore proved :

PROPOSITION 2.1. Consider a cycle (it) with perfect foresight., with

a _period k that is detected by th ectation function.

% * X b 4
(X ,...,x ) be the peri c orbit ith x = F(x ) .
1 k S s+l
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The cycle is W-stable if and only if the solutions of

Q(A) = dettl - AT(AT =0

all lie inside the unit circle of the complex plane, where

a
1 *
1) A is_the diagonal matrix . with a = F'(x )
, . s s+1
‘a
k
2) r{a) is the matrix
[ "o NS P ]
Yk Te-1 "
A 2(A) 2(A) 2(A)
\ \ Ty
A k (A A (A) k(A)
Te-1 k-2 A

and for r,s = 1,...,k

s
vy{(A) = L ¢ A
r h31  (h-1)k+r

3. DETECTING CYCLES

The foregoing proposition shows how the local properties of the b.p.f.
“dynamics F and of the expectation function ¢ interact in a neighborhood of a
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cycle — through the matrices A and r(A) , respectively — as far as W-
stability is concerned. Up to now, we have not fully exploited the fact that
the expectations functions detects perfod k . It turns out that this property
imposes strong restrictions on the behaviour of r(A) on the unit circle, which
will be crucial for our main result. ‘

T
LEMMA 3.1. Let x = (xl....,xT) be a sequence in X that has

period k . Let ch = wg(x yeee,X ) for h = 1,...,T and define

1 T
for every complex number A # 0
_ -h
y(A) = [h ch A
Then if ¢ detects Qegigg k
2wid/k
Yy(A) = A when A=e ,alld=1,...,k (3.1)

Proof : Let z = (zl,...,zT) be a real vector with period k . If the real p
T ;
is small enough, x + pz belongs to X . If ¢ detects period k
P{x + pz) = B(x) + p f(2)
in which f(z) = zk , if k » 2 and z1 otherwise. Next, there exists y in [0,p]
such that
(x + pz) - Y(x) = p [ ‘( uz) z
L ] ¥ uhth+u h
in which case
[h wg(x + pz) zh = f(z2)

Letting u go to 0 yields
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The result follows by applying this relation to z = (cos 2w dh/k) and to
z = (sin 2w dh/k) , ford=1,...,k . Q.E.D.

The next fact states the implications of the previous lemma for the

s
expressions y (A) appearing in Proposition 2.1, in the relevant case k » 2.
r

LEMMA 3.2. Let x and v(A) be _as in Lemma 3.1, with k > 2 .
Define for r = 1,...,k , and_every complex number A # 0

-h
vy (AN = [ ¢ A
r h31  (h-1)k+r

Then if & detects perjod nk , n > |

Yy () =0 forr ¢k -1and Yk 1(A) =1, (3.2)
r\ -
2wid/n
when A = e ,alld=1,...,n.

Proof : The first step of the proof is to remark that

k-r k r

k
k A YyA)= L w v (Aw) . (3.3)
r u=t u u ,
2w iu/k
in whichw = e . Indeed, the right hand of (3.3) is equal to
u

k -h r-h
I I ¢ A w

u=! h h u

k r
But [1 w is equal to k if r = k (modulo k) and to 0 otherwise. Thus
u=t u

-(h-1)k-r

k r
I v y(Ae) k I ¢ A
u=! u u h31  (h-1)k+r

k-r k
k A ¥y (M)
r

Rewrite (3.3) as
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k r 1/k
y (AN = L o (A w )
r u=t u u

(k-r)/k
A

2wid/n
and assume that ¢ detects period nk . Let A = e for some d = 1,...,n .

1/k nk
Then (A w ) = | and thus from Lemma 3.1 (applied to period nk)
u

17k 17k
y(A w)=A w

One gets therefore for such a A
(k-1-r)/k k
k A Yy(A) = L w
r us
The result foliows from the fact that the right hand of the last equality is

equal to k when r = k - 1 , and to 0 otherwise. Q.E.D.

Remark 3.3. It can be shown that if ¢ is linear, then (3.1) (resp.
(3.2)) is a necessary and sufficient condition for ¢ to detect period k
(resp. nk) .

4. PROOF OF THEOREM 1.1

We are now in a position to prove our main result. Lemmas 3.1 and 3.2
~yield the following important information concerning the value of Q(A) in

" Proposition 2.1 when the expectation function detects period nk , n > 1 , and
for A equal to a complex n-th root of unity.

LEMMA 4.1. Assume in Proposition 2.1 that ¢ detects period
nk , n3> 1 . Then

( =1 - oo
Q(A) | (aI ak) A
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X
Proof : If k = 1 , the cycle is actually a fixed point x of F . The matrix

x
A reduces to the single number a = F'(x ) , while I'(A) reduces to its top left
element y(A) . Thus ’

Q(A) = 1 - a y(A)
The result follows in that case by applying Lemma 3.1 to the period n .

If k » 2 , the result is a direct consequence of Lemma 3.2. It suffices

2wid/n
indeed to remark that when A = e , the matrix I - Ar(A) becomes

B 1

1 - a 0 0

1
0 1 - a 0
2
0 0 0 - a
k-1

- Aa 0 0 i

k

Q.E.D.

Theorem 1.1 , which asserts that W-stability implies F-stability of a
cycle with perfect foresight of period k whenever the expectation function
detects period 2k , becomes now a simple consequence of Proposition 2.1 and of
the previous Lemma. Indeed,

PROPOSITION 4.2. Under the assumptions of Proposition 2.1, let
a=s ai... ak . Then

1YIfa=1, then Q(1) =0 . If a > 1 , then there
exists a real number A > 1 such that Q(A) = 0 .

2) Assume that ¢ detects 2k . Then Q(-1) = 0 when a = -1 .
- If a < -1, then there exists a real number A < -1 such
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that Q(A) = 0 .

Proof : First remark that, from Lemma 4.1, Q(1) = 1-a . Thus Q1) =0
ifa=1.Nowifa>1, then Q(1) < 0 . But if A is real, Q(A) is real and
tends to 1 when A diverges to + «» (all elements of r(A) tend to 0) . Thus if
a > 1 , there exists by continuity a real number A > 1 such that QA =0 .,

The argument is similar when ¢ detects perfod 2k . From Lemma 4.1 ,
we have then Q(-1) =1 +a . Thus Q(-1) =Owhena=-1. Ifa< -1 , one has
Q(-1) < 0 , and by the same continuity argument as before, there is a real
number A < - 1 such that Q(A) = 0 . Q.E.D.

Proposition 4.2 establishes indeed the validity of Theorem 1.1. If the
expectation function detects period 2k , and if a cycle with perfect foresight
of period k is W-stable, then from Proposition 2.1, all solutions of Q(A) = 0
must lie inside the unit circle of the complex plane. Proposition 4.2 implies
that one must have laI... akl < 1 in such a case. This is precisely the

definition of F-stability.

3. A RESTRICTED CLASS OF EXPECTATIONS FUNCTIONS

Theorem 1.1 states that if ¢ detects period 2k, any cycle of period k
that is W-stable is F-stable. The example given in the introduction shows that
the converse is not generally true. This indicates that one needs much more
stringent conditions on the expectation function — specifically, on the
behaviour of the matrix r(A) appearing in Proposition 2.1 on the unit circle —
to guarantee that F-stability leads to W-stability. A set of such conditions is
provided by the following

THEOREM 5.1. Let (§£) be a cycl tisfying the conditions of
Proposition 2.1.

) If k=1, let « > | be the maximum of |v(A)| on the



17

unit circle. Then the stationary state is W-stable if
f - lal] « >0 . In particul when a = 1 , F-stabijlity

implies W-stability.
S
2) If k » 2, assume vy (A) =0 forr # k - 1 and
r
s
Al =1, and let « » 1| be the maximum of lyk 1(A)l on
s -

the unit circle, for s =1 ,..., k . Then the cycle is
W-stable if 1 - lal...akl (u'...uk) >0 . In particular if

a =1 for all s , F-stabjlity implies W-stability.
s

b 4 x
Proof : Consider first the case of a fixed point x of F , with a = F’'(x ).
Applying Proposition 2.1, we get the equation

Q(A) = (1-a y(A)) = 0

Let a be the maximum of [y(A)]| for |A] =1 . One has « » 1 since y(1) = 1
(Lemma 3.1) . Remark next that Q(A) = 1 when a = 0 , and thus that all

eigenvalues of Da(q*) are 0 . Note also that these eigenvalues vary
continuously with the parameter a . Suppose now that 1) is false, i.e. that
there is some a with 1 - ja] a > 0 such that the corresponding equation
Q(A) = 0 has a root with |A] » 1 . In that case, there must exist a in

(0,a1 such that the associated equation Q(A) = 0 has a root X on the unit
circle. One gets then

Iy = 1/1al 3 1/]al > «

a contradiction. If a = 1 , it is clear that F-stability (la] < 1) implies
W-stability.

The case k » 2 is dealt with by a similar argument. Under the assumption

of 2), by a reasoning analogous to the proof of Lemma 4.1, one gets
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1 k
QA = 1 - (a'...ak) Ay, (A) ()

k=1 T
The remainder of the proof is the same as in the case k = 1 , by a continuity

argument on the vector (ai,...,ak) . Q.E.D.

s
It should be noted that when k > 2 , the assumption Yy (A) = 0 when
r .

IANl =1 for r # k - 1 means that all the corresponding coefficients

s
c , h 3 1 are equal to zero. This condition is thus very
(h-1)k+r

restrictive. It says that locally, the expectations function is an average of
every k-th past observation. Theorem 5.1 above states in effect sufficient
conditions of the weights ensuring that F-stability implies W-stability.

s
Remark 5.2. If all the coefficients of y(A) when k = 1 , of Yk 1(A)

otherwise, have the same sign, they must be all nonnegative and sum

s
to one since y(1) = 1 or Yk 1(l) =1 from Lemma 3.1 or 3.2. One has clearly

s
then [y(A)} € 1 or ka I(A)l ¢ 1 on the unit circle, and F-stability implies

W-stability. The result had been proved in this particular case by a different
technique in Grandmont [8 , Proposition 3.21.
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FOOTNOTES

CEPREMAP, 142, rue du Chevaleret, 75013 PARIS.
INSEE, 18, Boulevard Adolphe Pinard, 75675 PARIS CEDEX 14.

For details, see J. Geanakoplos and H. Polemarchakis [71, Grandmont (8],
M. Woodford [91.

The restrictions to a fixed expectation function ¢ and a fixed (and
finite) memory lag T are there to enable us to deal with an autonomous
(time independent), finite dimensional dynamical system. The assumption
that ¢ does not depend on the current state xt is made for simplicity to

avoid having to solve (1.1) (1.2) for xt in order to derive (1.3) below.

The main results of the paper are preserved under a slight perturbation
of the expectation function. They are thus still valid — provided that
(1.1) (1.2) can be solved uniquely for xt — 1f ¢ does not depend "too

much” of the current state variable xt , a condition thaf is familiar in
temporary equilibrium analysis.
The iterates of a function f from a set into itself are defined

1 J j-1
recursively by f =f , f =fof .

k-1

k x *
From the chain rule of differentiation applied to ﬁ (qi) = ﬁ(ﬁ (qi)) ,

xk %
one gets that DW (qi) is the product of the Jacobian matrix of ﬁ
%

%
evaluated at each point qI,...,qk ,
zk % PR x kX oz X x X
DW (qi) = Dw(q1 1) ces DW(q1) Dw(qk) v Dw(qi)

The statement follows then from the fact that for any two square
matrices A and B with the same dimensions, the products AB and BA have

the same eigenvalues.
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