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UNE APPROCHE GE~ERALE DE L'AUTOCORRELhTION 

C. GOUP.IEROUX, A. MONFORT, A. TROGNON 

RESUME 

Cet article étudie les problèmes de tests et d'estimation 
en présence d'autocorrélation. Le modèle général considéré 
recouvre des modèles très divers comme les modèles à équations 
simultanées non linéaires, les modèles probit, les modèles 
Tobit, les modèles de déséquilihre; les modèles frontières ••• 
Dans ce contexte, il est montré que le test du score peut ~tre 
complètement explicit~ et que le test obtenu généralise le test 
classique de Durbin et Watson; par ailleurs il est établi que 
!'estimateur du maximum de vraisemblance est robuste vis à vis 
de l'autocorrélation. 

A GENERAL APPROACH OF SERIAL CORRELATION 
C. GOUR! EROUX, A. MONFORT, .A. TROGNON 

ABSTRACT 

In this article the testing and estimation problems 
are discussed in the case of serial correlation. Various models 
are particular cases of the general framework considered : the 
non-linear simultaneous equations models, the probit models, the 
tobit models, the desequilibrium models, the frontiers models ••• 
In this context, it is shown that the score test can be ex~licited 
and that the statistic obtained is a generalization of the 
Durbin-Watson'one ; on the other hand the maximum likelihood 
estimation procedure is shown to be robust with respect to serial 
correlation. 
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An important improvement of the econometric methods 

for time series data has been the introduction of the serial 

correlation. Since the well-known DURBIN and WATSON'work 

(1951) solving the problem of testing the serial correla­

tion in the linear model, many studies have proposed testing 

and estimation procedur~ for various kind of models with 

serial correlation. However the solutions proposed in this 

literature are not yet unified and, moreover, they do not 

caver the important case of the so-called 11 limited dependent 

variables models 11
, embedding qualitative response models, 

tobit models, disequilibrium models ... 

In this paper, we propose a general approach of 

the problem of testing serial correlation. This approach 

is a score type approach and it rests upon a very useful 

result, giving the form of the score vector in a trans­

formed model, which is surprisingly ignored in the econome­

tric literature. Our results are valid for a large class 

of models, including the limited-dependent variable models, 

and they naturally introduce the notion of generalized 

residuals which will be obviously useful for many other 

problems. Moreover, we show that the robustness property 

of the maximum likelihood method with respect to the serial 

correlation, proved by ROBINSON (1982) for the Tobit model, 

remains valid for a large class of models. 
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In section 2, we set up the class of models consi­

dered in the main part of the paper ; in section 3 we de­

rive and discuss the likelihood function of this general 

model ; the problem of testing serial correlation is solved 

in section 4 and the estimation problem is considered in 

section 5 ; section 6 is devoted to various extensions. 

2. THE MODEL. 

2.a. Description of the model. 

The observed endogenous variables are deduced 

from latent endogenous variables satisfying a nonlinear 

simultaneous equations model with autocorrelated errors. 

Let y* t be the p-dimensional vector of the latent 

variables and let Y* c mP be the range of 

latent variables are such that : 

( 1 ) = 

y* t . These 

where is a q-dimensional vector of exogenous variables, 

b is a k-dimensional vector of parameters and ut is the 

p-dimensional vector of disturbances. h(. ,xt;b) is assumed 

to be a one to one function from Y* onto mP ; i t i s 
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thus possible to derive from equation (1) a well-defined 

reduced form. 

In this section and in the two following ones, 

we consider the case of an autoregressive error of order 

one : 

( 2) = + 

where R is a px p non-singular matrix, whose eigen­

values are inside the unit circle and where E = (Et , t E ll) 

is a white noise process with zero mean and with a regular 

variance-covariance matrix n 

( 3 ) i . i . d 

The m observed endogenous variables, denoted by yt 

are deduced from 

onto Y c IRm 

( 4 ) = 

y* t by a known mapping g from Y* C IRP 

As it will be seen from the following examples, this for­

mulation includes as special cases a great number of important 

econometric models . 
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2.b. Sorne examples. 

Example 1 : When the observed variables coïncide with the 

latent ones, i.e when g is the identity function, the 

previous formulation contains the cases of the usual 

linear model, or of linear simultaneous equations models, 

but it also contains nonlinear unidimensional models such 

as 

À 
= X I C + t 

or nonlinear simultaneous equations models such as 

( Log Y1t = a1y2t + X 1 t b 1 + u1t l with a1a2 l Y2t = a2y1t + x2tb2 + u2t 

Example 2 Another kind of applications concerns limited 

dependent variable models, such as probit, to bit, frontier 

< 0 

or disequilibrium models. The serial correlation in such 

models seems to be an important point and has been dis­

cussed by MAC RAE KENNAN (1982), GOURIEROUX-MONFORT-TROGNON 

(1984) for probit models, by DAGENAIS (1982),ROBINSON (1982), 

CHESHER-IRISH (1984) for tobit models, by ARTUS-LAROQUE­

MICHEL (1984) for disequilibrium models. 



- 5 -

Sorne of these models will be used as illustrations in 

further parts of the paper. In particular we shall consi­

der the probit model which is defined by : 

( 5) y* t = 

= 

+ 

1I y*>o 
t 

= 

= 

if 

+ 

y*> 0 t 
otherwise 

(The variance of Et is taken equal to 1 in order to 

solve the usual identification problem) ; we shall also 

use a disequilibrium model defined by : 

= + 

( 6 ) 

= + 

= 

3. DERIVATION OF THE LIKELIHOOD FUNCTION. 

Et,.., N(o,1) 

To build up the likelihood function, we successi­

vely consider the density function of y* = (Yf···Yf) 1 

and the density function of the observables y = (y 1 ••• yT)• 
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The first one is easily obtained if it is possible to 

apply a Jacobian formula. We assume that the regularity 

conditions for this formula to be val id are satisfied. This 

is the case if function h is differentiable and has a 

differentiable inverse; this is also the case for some 

piecewise differentiable functions such as the function 

which appears in multimarket disequilibrium models (see 

GO U R I E R O U X - LA F F O N T - MO N F O RT ( 1 9 8 0 ) ) . 

3.a. Density function of the errors. 

1 = 
(2rr)P 12 ldetQ 

exp 1 u• Q-1 u - 2 1 1 

T 
rr /~ exp - i (ut - Rut_ 1)·n- 1(ut-Rut_ 1) 

t=2 (2rr)P ldetn 

oo· 

where Q = l Ri n Ri 
I 

is the marginal variance-
i=o 

covariance matrix of ut 

The invertibility of Q is a direct consequence of the 

invertibility of n and R 

3.b. Density function of the latent variables. 

The density function of (y1, ... ,y1) with respect 

to the Lebesgue measure on y*T, denoted by µ , is obtai­

ned by the Jacobi an formula : 
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= 

where Jt(. ;b) is the jacobian determinant of the mapping 

h(. ,xt;b) 

When the hypothesis of noncorrelation Ho 

satisfied this expression becomes 

= 

where = 

T 
II fl*(y*·b n) 

0 t' ' t = 1 

is the marginal density function of y* t 

(R=o) is 

under Ho 

3.c. Density function of the observable endogenous variables. 

In order to easily derive this function, we first 

establish a lemma, which shows that the density function 

fl of the observable variables can be deduced from the 
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density function t* of the latent variables by integra­

tion with respect to a measure which does not depend on 

the parameters. 

Let us consider a particular value 1\, 

0 of the pa-

rameter 0 = (b,n,R} ; the measure µ can be replaced by 

the probability distribution : 

P* 
~ 

= t * ( y* J). µ = 
1\, 1\, 1\, 

t*(y1 ... y1;b,n,R).µ 

The density function of P* = t*(y*;e).µ 
0 

to P* is : 1\, 

0 
ft(y* ;0) 

0 
= t*(y*;e) 

t*(y*;Ëi) 

with respect 

For each value 0 of the parameter, the associated proba­

bility distribution of the observables y is denoted by 
p 

0 

Lemma The probability distribution P
0 

has a density 

function with respect to Pl\, • This density 
0 

function, denoted by f~(y;e) , is given by: 

= El\,[ft(Y*;e)/Y] 
0 0 

where E~ ( /Y) is the conditional expectation 
0 1\, 

associated with the value 0 of the parameter. 
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Proof : For any positive measurable function lP , we have 

r T q>(y) dP 0(y) 
) y 

= with g (y*) = [ g ( Y1) ' ••• 'g ( Yr) ] 

= I T q>[g(y*)] f~(y*;0) dPt(y*) 
( Y*) 0 0 

= f f q>[g(y*)] f;t(y*;0) dPt(y*/y) dPl\,(y) 
yT (Y*) T 0 0 0 

(where dP~(y*/y) is the conditional distribution 
0 1\, 

of Y* given Y associated with 0 ) 

= f yT 
q>( y) [J ft( y*; 9) dP!(y*/y)J dPl\,(y) 

(Y*)T 0 0 

= f T q>(y) El\,[ft(Y*;0)/Y=y] dPl\,(y) 
Y 0 0 0 

Therefore p = 
0 

with fl\,(Y;0) = El\,[f;t(Y*;0)/Y] 
0 0 0 

Q.E.D. 

The density function fl\,(y;0) is obtained by integrating 
0 ft (y*; 0) with respect to the conditional distribution 

0 
Pt(dy*/y) or, equivalently by integrating the initial 

0 
density function .Q, * {y*; 0) with respect to the measure 



- 10 -

v,jdy*/y) = Pt(dy*/y) which is independent 
G 0 2*(y*;0) 

from the parameter 0 

Therefore the probability distribution of the observable 

endogenous variables has a density function t which can 

be written as : 

( 7 ) 2(y;0) = r t*(y*;e) v(dy*/y) 
J ( Y*) T 

where v is a fixed measure. 

Remark 
'\, 

It may be interesting to choose a value 0 for 

which the latent variables are uncorrelated. In 

this case the measure v"' is a product of measu-
0 

res : 

v"'(dy*/y) 
0 

= 
T 
II 1 

t=1 t~(y~,&) 

3.d. Sorne difficulties. 

The previous result can be illustrated by consi­

dering a probit model. In this case the density function 

of the observables may be chosen as 

t(y,0) = 
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where the symbol means that the set of integration 

i s y*> 0 t if ' i s y*< 0 t if Y - 0 t -

In general, the density function of the observables takes 

the form of a multi-dimensional integral whose dimension 

is the number of observations T . This creates serious 

problems for the maximum likelihood estimators of the 

parameters and for the test procedures of hypotheses 

such as Ho p = o (non c o r r e l a t i on ) : 

i) The numerical maximization of the likelihood function 

with respect to b,n,R is likely to be very difficult 

(in the general case). 

ii) The asymptotic tests of Ho , based on the uncons­

trained ML estimators, are also untractable. This 

remark is valid for the Wald test or for the likeli­

hood ratio test. 

iii) This difficulty does not arise with the score test, 

or the Lagrange multiplier test, which is based on 

the constrained ML estimator. In effect 

null, t*{y1, ... ,yî;b,n,R) is a product 

under the 
T 
II R.*(y*·b Q) 

0 t' ' t= 1 

and, from the remark, the multidimensional integral reduces to a 

product of integrals whose dimension is equal to p and, 

therefore, is independent from the number of observations. 

iv) However, even if the score statistic can be numerically 

evaluated, its asymptotic properties are not known. In 
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effect they are usually derived by using the asymptotic 
properties of the constrained and of the unconstrained 
ML estimators, but the form of the likelihood function 
does not satisfy the usual regularity conditions ensuring 
the consistency and the asymptotic normality of the uncons­
trained ML estimators. 

In the following sections we develop several testing and esti­
mation procedures applicable in nonlinear models with serial 
correlation. These procedures are based on asymptotic results 
and we assume that the classical regularity conditions, ensu­
ring consistency and asymptotic normality of M-estimators are 
satisfied. (See BURGUETE -GALLANT-SOUZA (1982)). 

4. SCORE TEST OF THE NON CORRELATION HYPOTHESIS. 

4.a. Links between observable and latent scores. 

From the previous lemma, we know that the density 

function of y may be chosen as : 

,Q,(y;e) = i*(y*;e) 
'\, 

i*(y*;e) 
P,t(dy*/y) 

0 

Assuming that regularity conditions for commuting deriva­

tion and integration are satisfied, we deduce that : 

a logi(y;e) 
ae 

J
r ~ t*(y*;e) 1 P,t(dy*/y) 
(Y*)T ae i*(y*;e) e = 

J T t*(y*;~) P~(dy*/y) 
(Y*) t*(y*;e) 0 

Noting that the score is independent from the dominating 
'\, 

measure, in particular independent from 0 
'\, 

by setting 0 = 0 : 

we obtain 
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P*(dy*/y) 
0 

(8) a logdy;e) 
ae 

= E [ a 1 o g 51, * ( Y* ; e ) / y = y] 
e ae 

The observable score is equal to the conditional expecta­

tion of the latent score given the observable endogenous 

variables. 

4.b. Expression of the observable score. 

The score test of the hypothesis Ho (R = o) is 

based on the score estimated under the null, i.e on 
~ _ [a 1 o g 51, (y; b, n, R )J 

- avec R - -
b=boT'n=noT'R=o 

where b
0
T and n

0
T are the ML estimator of b and 

n constrained by Ho 

From (8) , we deduce that 

= 
a logt(y;b,n,o) 

avec R 
= E [alogt*(Y*;b,n,o) 

0 
avec R 

where E ( /Y=y) denotes the conditional expectation 
0 

under the null. 

We have : 
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avec R = { a v!cR 
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1 [- 2 log det Q] 

a 
+ a vecR [ - } u 1 Q - 1 u.1 ] + 

T a 1 
tI2 a vecR ( - 2 log det n ) 

T a + I 
t=2 avecR 

-1 = (n s 

with 

Therefore 

I ) 

= 

1 
[ - (u - R ut_ 1)• 2 t 

T 
I 

t=2 
ut s ut-1 

~ = a logdy;b,n,o) = E ( - 1 [ Q a vec R 
0 

-1 T 
= Q 8 I l E (ut 8 ut-1 / 

t=2 0 

-1 (u - Rut_ 1)1} Q t R=o 

T 
8 I ) I ( ut 8 ut-1 ) / y 

t=2 

y = y) 

Since, under the null, the vectors (ut,yt) are serially 

independent, we obtain 

= 

We deno.te by : 

( 9 ) = 

~- ------------·-·· 

= y] 

.J 
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the prediction of the disturbance ut evaluated under 

the null 0 = (b,n,o) and by 

( 10) 

its estimation under the null. 

The score statistic i s thus given by 

( ~ -1 T 

·~ ( 11 ) 0 I) I 
'\, ç = no ut 

t=2 

This statistic is in one to one relationship 

with the empirical autocovariance of the 11 predicted 11 

residuals, ; these residuals will be called gene-

ralized residuals. 

4.c. Asymptotic distribution of r,; under the null. 

As noted in section 3.d , it is necessary to 

examine directly the asymptotic properties of r,; under the 

null. 

Let us assume that the true value of the parameter is 

0 
0 

= and let us denote by : = 

the constrained ML estimator of 0 • Under a set of 
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classical regularity conditions, including the asymptotic 

identifia b il i ty of 0 under the null ( see BURGUETE-GALLANT-SOUZA ( 1982)), 

it is possible to prove the strong consistency of 0
0

T to 

0
0 

and to replace the statistic ~ by its expansion in 

a neighbourhood of 0 • More precisely, we have : 
0 

1 T 
I ~t GI ~t-1 

/T t=2 

= 

T 

= 

1 = - I E0 (ut/yt) 
lî t=2 0 

T 

1 T 
I 

lî t=2 

a1 E0 (ut-1 1Yt-1) 
0 

1 
[E0 (ut/yt) 

a l + T I E0 GI a 0 • E0 (ut-1 1Yt-1)J t=2 0 0 0 

1 T 
[a~ 1 + T I E0 E0 (ut/yt) a1 E0 (ut-1 1Yt-1)] t=2 0 0 0 . 

~ 

If (0 oî 

~ 

/T (eoî 

- 0 ) 
0 

- 0 ) 
0 

+ op ( 1 ) 
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Under the null E
0 

(ut/yt) and :
0 

E
0 

(ut_ 1/yt-l) are 
0 0 

independent variables ; this implies that the second and 

the third terms of the previous equations are equal to 

zero since, we have, for instance : 

Therefore 

= 

Let us now consider the asymptotic behavior of the empiri-
1 T 

cal mean î I E
0 (ut/yt) ~ 

t =2 o 
Under regularity assumptions 

E0 (ut-1/yt-1) 
0 

required for the strong law 

of large numbers and central limit theorem we have : 

i ) 

converges almost surely to 
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T 
ii)-1 I E0 (ut/yt) e E0 (ut_ 1/yt_ 1) is asymptotically nor-

lf t=2 0 0 
mal with zero mean and with a covariance matrix equal to : 

00 

I r. 
j=-oo J 

= 

= 

where plim denotes the probability limit with respect 

to the exogenous variables. 

lt is easily seen that 

00 

I r. = 
j=-oo J 

r = 
0 

r. = o ~ j ! o and therefore 
J 

Finally, the score statistic ç is such that, under the 

null 

j > 0 
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4.d. The score test. 

of 

( 1 2 ) 

1 

/F 

A consistent estimator of the asymptotic variance 

, under the null is such that 

Therefore the chi-square statistic associated with the 

score may be chosen as : 

( 1 3) s1 = 

This statistic is distributed under the null, as a x 2 

with p2 degrees of freedom. The score test procedure of 

the non correlation hypothesis Ho : (R=o) is 

accept Ho , i f S 1 
< x2 (p2) 

1 -a. 
( 1,4) 

reject Ho ,if s1 > x 1_a.(p 2 ) 

4.e. Comparison with the D.W. Statistic. 

In the unidimensional case, s1 reduces to 
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s_ 1 

This form may be compared with the square of the autocor­

relation coefficient of generalized residuals, i.e. with : 

= T T 
I 

t=2 

These two statistics are asymptotically equivalent under 

the null if and only if : 

T A A 

l . 1 z: 1vu2 1v2 P 1m - u 
T t= 2 t t-1 

1 T 1v2 
= plimr I ut 

t=2 

1 T 1v2 
plim î L ut-1 

t=2 

<i ) 1 T 1v2 1v2 
plim - I u u 

T t= 2 t t-1 
= 

1 T 1v2 
plim - I u 

T t=2 t 
1 T 1v2 

plim î I ut_ 1 t=2 

This condition is not satisfied in general . However it i s 

satisfied in two important cases 

i ) if Yt i.e if 
'\, 

= Yt ' ut = ut 

i i) if the successive observations of the exogenous va-

riables xt can be considered as i.i.d variables. 

The first case covers the example of the usual linear 
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model and this explains the usual relationship between the 

D.W. statistic and the score test statistic. 

By analogy, it is clear that a generalized DURBIN-WASTON 

statistic has to be defined from s1 and not from s2 
which is not in general equivalent to s1 . Such a sta­

tistic L'.l.W. could be implicitely defined by : 

= 

and would not in 

T (1 - &W.) 2 
2 

general be 

T 'ù 

I ( u -
t=2 t 

asymptotically equivalent to 

'ù 2 
u t-1 ) 

4.f. Score test with maintained nullity constraints on 

the autocorrelation matrix. 

The previous test is easily generalized, when, in 

the maintained hypothesis, some elements of the autocorre­

lation matrix R are known to be equal to zero. The m 

unconstrained elements of R may be defined from vec R 

through a selection matrix A , with size m x p2 and 

rank m ; each row of A has a unique non null element 

and this element is equal to 1 
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In this case, the score test is based on the vector 

A ç = 

The associated chi-square statistic has the following form 

(15) 1 s1(~} _= __ ,_'_A_' _[_A_v_i __ A_'_J_-_1_A_i_ 

where ç and V ç are given by (11) and (12). 

The statistic s1(A) depends in general on the variance-

covariance matrix Q GI I 
0 

appearing in 

is sometimes possible to simply suppress 

It is the case if and only if 

However, it 

Q GI I 
0 

in (15). 

This condition is satisfied for any possible form of V ç iff the 

two matrices A' and (n- 1a1I) A' have the same range : 0 

< ~ (16) Ker A = ( n 
O 

a1 I ) Ker A 
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As seen above, this necessary and sufficient condition is 

obviously satisfied when we are interested in all the m2 

elements of the autocorrelation matrix R , i.e when 

A = I; it is also satisfied when the two matrices R and 

n have the same bloc diagonal representation, in parti­

cular when they are constrained to be diagonal. In such 

a case, the test statistic reduces to 

S 
1 

(A) 

( 
T 

A I 
t=2 

If the selection matrix A can be decomposed into a tensorial 

product A= B ~ C , this expression becomes 

S1(B~C) = 

with = 
'\., 

and wt = 
'\., 

C ut 

In particular if A 

j
th diagonal term of 

is the ( 1 'p2) 

R , we have 

A = B.~ B. 
J J 

matrix selecting the 

where B. is the p-dimensional row vector whose components 
J 

are zero except the j th component which is . In this 



case 

where 'vj 
ut 

Remark 
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[J2 
A 

A o 2 
l\,j 

1\, J l ut ut-1J 
S 1 ( B j Ill B.) = T J 

(~{)2 ( l\,j ) 2 I ut-1 t=2 

i s the . th component of 1\, 

J ut 

The form of the statistic and its asymptotic 

properties remain the same if the parameter b 

and n are equality constrained. Thus it is in 

particular possible ta fix equal ta 1 some diago­

nal elements of n (case of qualitative models) 

or ta impose ta this matrix ta be diagonal. 

4.g. Determination of the predicted residuals. 

The expression of the test statistic contains 

the predicted residuals . These residuals can be obtai-

ned along two different lines. 

i) A first approach consists in computing the analytical 

form of the prediction of the disturbance and then ta 

replace the parameters by their constrained ML esti­

mations. 

For instance, let us consider the disequilibrium model 

defined by : 
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* 
Y1t = x1t b1 + u1t u1t 1 0 

'ù N ' 
* 

Y2t = x2t b2 + u2t u2t 0 

with Yt = Min * * (y1t'Y2t) The prediction of 

absence of autocorrelation i s 

l11 t = Eo(u1t 1Yt) 

= Po[Y1t > Y2t/Yt] Eo[u1t/Yt,Y1t > Y2t 1 

+ Po[Y2t > y·'1t/Yt] Eo[u1t/Yt~Y2t > Y1tl 

= Po[Y1t > Y2t/yt] Eo[u1t/Yt,Y1t > Y2tl 

+ Po[y2t > Y1t/yt] (yt - x1t b1) 

and the terms of this decomposition are 

with = 

= 

and : 

= 

o·-
2 

+ 0 11 - p 2 
1 

02 
1 0 12 

0 12 
02 2 ) 

u1t in 
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where p is the correlation between and 

~ and <I> are the density and the cumulative function 

of the standard normal and 

MILL's ratio. 

À = ~ 
1 - 4> 

is the associated 

This analytical approach has be~n used by ARTUS-LAROQUE 

MICHEL (1984) in their estimation of a French multi­

markets disequilibrium model. 

ii) Another approach appears to be easier, when the latent 

model is linear 

y* = t 
In effect in such 

ra 1 0 g JI,( y ; b ' n ' 0 )1 
1 ab 

lalogi(y;b,n,o) 
a vec n J 

a case the constrained score 

, which is used to determine the 

constrained M.L estimators b
0
T and n

0
T, has a first 

component given by : 

alogt ) ab (y;b,n,o = 
T 
l 

t = 1 
= 

T 
l 

t=1 

'ù Therefore the generalized residuals ut may in general 

b f alogt( - - ) · d h h e extracted rom ab- y;iT,n
0
~o prov1de t at eac 

T a "' term of the sum l TI logt(yt/xt;b,n,o) is computed. 
t=1 . 

'ù 
X I u 

t t 
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5. ESTIMATION OF THE PARAMETERS. 

As noted in section 3, it is in general impossible 

to compute the unconstrained M.L estimators of b,n,R • We 

propose in this section some consistent estimators of these 

parameters in presence of autocorrelation. 

5.a. Constrained M.L. estimation of b and n 

The result obtained by ROBINSON (1982) in the 

context of tobit modelscan be generalized. 

In effect, if autocorrelation is present, the constrained 

M L estima tors boT and noT respectively tends to the 

true value bo of b and the true value of the variance 

of ut 
00 

Ri Ri , 
Qo = .l ~o 

, =o 0 0 

(in particular ~oT i s not a consistent estimator of no 

Let us now see why this result holds. 

) . 

Under the null hypothesis Ho 

function is : 

(R=o) , the log likelihood 

T 
= l 

t = 1 
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where 1(yt/xt;b,n) is the conditional density function of yt 

given xt under the null. The constrained ML estimators 

of b and n are solutions of : 

They converge to the solutions of the limit optimization 

problem (see BURGUETE-GALLANT-SOUZA (1982)). 

0 

Max 
b,n 

1 T o 

plim -T I E log }(yt/xt;b,n) 
t = 1 

where E is the expectation with respect to the true condi-

tional distribution of given , i.e the distribu-

tion associated with the true values b
0

, n
0

, R
0 

of the 

parameters. 

We have 

0 

E log 1(yt/xt;b,n) 

and, from KULLBACK's inequality, this quantity is maximum 

for b = b 
0 

and n = Q 
0 

, which gives the result. 

Therefore the constrained ML estimator of b remains 

consistent when RI o but the same result is not valid 
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for the constrained ML estimator of the variance. More 

precisely n
0
T asymptotically overestimates n

0 

= + 
00 

I 
i = 1 

5.b. Estimation of the autocorrelation. 

» 

since 

By analogy with the linear case, it might seem 

natural to consider the empirical correlation between the 

generalized residuals, i.e, in the unidimensional case : 
T 
\ '\, '\, 

= 
l ut ut-1 

t=2 • However this quantity converges to 

the theoretical correlation between and and is 

in general different from the theoretical correlation p 

between the disturbances. 

Another idea consists in directly studying the cross moment 

between the observables : E(yt Yt_ 1) 

The cross moment E(yt Yt_ 1) = E[g(y*)g'(y* )] is a t t-1 
function of b Q and o' o (since n

0 = Q
0 

- R
0 

Q
0 

R~) 

= 
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Since consistent estimates of b Q have been found in 
0 ' 0 

the previous subsection, it is possible to consistently 

estimate the autocorrelation matrix R
0 

by mean of a 

quasi-generalized least squares method. Such an estimator 

RT could for instance be defined as a solution of: 

( 1 7 ) 
T 

Min l llvec (yt Yt_ 1) 
R t=2 

if the elements of R are identifiable from the cross 

moment E(yt Yt-1) 

Finally a consistent estimator of rio may be obtained from 
'\, 

the consistent estimators rloT and RT of Qo and Ro 

Example 1 8 . Let us consider a probit model with autocorre-. 
lation 

'I 
y* = xt b + ut ut = p ut-1 + E:t t 

E: t 'Il N (o, 1 ) 

l Yt = 1I y* > 0 t 

The cross moment is given by 

= Yt-1 > o) = a(- xtb , - xt 1b ,p ) 
0 - 0 0 

where a(a,B,p) = P(v > a, w > B) 

with N r[o] , rl1 P]l l Ü; p 1 J 
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Since a is strictly increasing with respect to p (see 

SLEPIAN (1962)), the solution of 

T 
Min l (yt Yt-1 

p t=2 

is unambiguously defined. This estimation method generalizes 

the tetrachoric estimation method introduced by PEARSON (1901) 

(see GOORIEROUX -MONFORT-TROGNON (1984)). 

5.c. Consistency of the score test. 

The knowledge of the asymptotic properties of 

b
0

T and n
0

T under the alternative (R
0 

f o) allows to 

study the consistency of the autocorrelation score test. 

Under usual regularity assumptions, a necessa-

ry and sufficient condition for the test to be consistent 

is 

plim 1 
ç;T T f 0 under the alternative 

( ) 1 T 
plim l 'v 'v 

f T ut B ut-1 0 
t=2 

<i ) 1 T 
plim T l AE (ut/yt) 181 

A E (ut-1/Yt-1) t=2 boT'noT' 0 boT'noT' 0 

where E denotes an expectation with respect to the 
b,n,R 

distribution associated with the values b,n,R of the para-

meters. 

f 0 
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The previous condition is also equivalent to 

1 T 
Plim T I E (ut/yt) l!I E (ut-1 1Yt-1) t- 0 

t=2 bo,Qo,o bo,Qo,o 

T 
< ?> 

1 plim T I E [ E(u~/yt) a E(u~-1/yt-1)] 
t=2 bo,no,Ro bo ,Qo' bo,Qo' 

Noting that = = 0 

and that = , we see that 

the test is consistent, for any limit distribution of the 

exogenous variables, if and only if the predictions under 

are correlated. 

Example 19 : In the probit model studied in example 18, 

the prediction is given by 

Therefore, the covariance between successive predictions 

is proportional to : 

= a(- xtb ,- xt 1b ,P ) - ~(xtb) ~(xt 1b) 0 - 0 0 0 - 0 

., 0 
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We deduce from the strict monotonicity of a with respect 

t o p , t ha t t hi s q u an t i t y i s e q u a 1 t o zero i f and o n 1 y i f 

= 0 Po • This shows the consistency of the test. 

6. SOME OTHER FORMULATIONS OF SERIAL CORRELATION. 

In the previous sections, we modelize serial 

correlation by mean of an autoregressive scheme on the 

disturbances. We now consider some other ways of intro­

ducing such a correlation, restricting ourselves to the unidimen­

sional case, for sake of simplicity. 

6.a. Lagged endogenous variables. 

The latent model is defined by : 

y* t = + + 

where the disturbances are i.i.d with normal distribution 

and 1 cp 1 < ; the observables are : 

= 

The score statistic for testing the hypothesis of no serial 

correlation Ho (cp = o ) is given by : 

'1 

(. / 

·, 
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A( 1) = ra logi(y;b,q>,cr 2 ) 1 
/; Î L a li) J b = b ,n = 0 cr 2 = ~ 2 o oT'"' ' oT 

= 
{

E ra logt*(y*;b,q>,cr 2
) 

L aq> l} / y A A J b=b ,n=o cr 2 =cr 2 
oT '"' ' oT 

= { E [cr\ / l} y A A 

J b=b
0

r,q>=O,cr 2 =cr~T 

1 T 
A 

I 
'\, 

(tJt-1 f(xt-1 'boT)) = -A- ut + 
2 t=2 cr oT 

For the same reasons as i n 4. C. the statistic 
A ( 1 ) 
i; T 

asymptotically equivalent, under Ho , to 

where 

Since 

1 
cr2 

0 

= with 

, the statistic 

i s 

cr 2 
0 

IT 

is asymptotically zero mean normally distributed ; its asymp-
00 

totic variance is I r. 
j =-oo J 

with, for j > o 

r. = 
J (~t 1 .+f(xt 1 .bo))J - +J - +J 

and r . = r. 
-J J 
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It is clear that r. = o 
J 

and, therefore, the 

asymptotic variance of 
cr 2 

0 

1T 

= 1 T "'2 "'2 pl im - ' u y T t~ 2 t t-1 

with = 

Finally the statistic i( 1)is such that, under T Ho 

_! i(1) a.s 
T T T -+ CO 

0 and 1 ·(1) d 
Ir l;T T -+ CO 

1 J ~ 'v2 1 
P 1 i m î l ut Y t-1 J 

t=2 

The score statistic is : 

( 
T • • ] 2 

tI2 ~t Yt-1 
T • . • 
l "'2 'v2 

t=2 ut Yt-1 

whose asymptotic distribution, under 

follows. In the same particular cases 
T • T • 

be replaced by + (}: ~i] (}: Yi_,) 
t=2 t=2 

Ho, i s x2
( 1 ) and the test 

T • • 
, 'v2 'v2 as in 4.e , l ut Yt_ 1 t=2 

may 

Let us now briefly consider the estimation problem when Ho is uncorrect­

ly assumed. Under the null, the log likelihood function is 
T 

log R.(y1, .•• ,yT;b,o,cr2
) = I log t(yt/xt;b,cr 2

) where 1:(yt/xt;b,cr 2
) 

t=1 
is the conditional density function of Yt given xt , under H

0 
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The ML estimators of b and a2 under Ho are solutions of 

and these estimators converge to the solutions of 

0 

Max 
b,a 2 

where E i s the expectation with respect to the true condi-

tional distribution of Yt given xt . The density func-

tion of t hi s distribution i s not, in general, of the same 

form 'v and the argument of 5.a does not hold. Note as R, 

however that if the xt 's are i.i.d normally distributed 
K 

and if f(xt,b) 

distribution of 

= xtb = s + I x.t s. , the conditional . 
1 1 1 

y* t given 
l = 

i s 

a 2 + (p
2 b I V X b l 

1 - (p2 J 

the same argument as in 5.a, shows that the estimator of 

under (p = o remains consistent when (p f o 

but it is not the case for s and a 2 

B • b • Ge n e ra 1 a ut o r e g r es s i v e d i s t u rb a n ce s • 

Let us now consider a latent model defined by 

= t = 1, ... ,T 
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where is a zero-mean, gaussian autoregressive process 

of order q ; this process is defined by : 

= 

or, using the lag operator B , by 

= 

with <li ( B) = 

where the et's are IIN(o,o 2 ) and the roots of <1>(8) are 

assumed to be outside the unit circle. The observables are 

The likelihood function of the latent model is 

T 1 
t*(y*;b,q>,o 2 ) = (2n)- I (det W)- 2 

where 

u' = 

W = V(u) = oz 
u 

l 
PT- 1 • • • • • • • • • • •. • p 1 



cr2 
u 
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is the variance of ut and 

coefficient between ut and ut-h • 

is the correlation 

The score vector with respect to (() in the latent model is 

such that 

a Logt* 
a((). 

l 

= 
1 

- 2 
a 

a((). 
l 

log (det W) - { u' w- 1 u 

The first term is equal to zero under Ho ; in effect, 

( a!i Log det 
') r w- 1 ~1 Wj = tr 

t a(()iJHo 
Ho 

= cr2 tr [ aa:J Ho = 

moreover 

= 

cr2 P. 
l = + q (apjl cr2 I -

( 1-(()1P1 
\ j=1 d(()iJ - - (()qpq' 

acr 2 
and 

(a(()~] Ho= 0 since p . = 0 
l 

Let us now consider the term. f_a_ 
t d(()i 

V ; > 0 

T ( a crt l 
cr2 alP, J Ho 

(()• 
J 

(1-(()1p1 -

under Ho 

- (()qpq) 
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a (u• w-1 u) a (tr w- 1 u u') = a <.P • a <.P • 1 1 

= tr raw-1 . u U Il 
l cl<.Pi ) 

We have 

aw- 1 w-1 aw w-1 = cl<.P. c)<.j). 
1 1 

raw-11 
= 1 r aw l l cl<.Pi J Ho 4 l cl<.Pi J Ho cr 

a 0 2 

Using the result 
( cl<.P~] Ho 

= 0 we get 

1 p 1 • • • • • • • PT -1 

( aa:J Ho 
02 

a = -cl<.P• 
1 

PT- 1 ••••• • • ••••• 1 
j Ho 

Moreover we have 

1 

1 p 1 .......... Pq-1 <.P 1 p 1 
p 1 1 Pq-2 

p2 

J 

= 

l • p·r Pr-1Pr-2··········Pr-q <.P q J 

different i at i ng with respect to <.P • 
1 

and evaluating the 

result under Ho we obtain : 
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ap, 

r 
1 p 1 ... Pq-1 0 ( 1 . 0 

• . a lP. 
, l 

a 0 ·1 
= + a~ Q •• •••• 0 • 1 

1 . 
['PT l' ' PT -1 · ...... PT-q 

. . . . 
a lP . L j Ho ÜJ O· • • • • O l Ho 

which shows that 
1 if h = i 

[ a Ph l = 
ô<.pi Ho 

0 otherwise 

Finally we have 

[_a_ u I w - 1 u 1 
ô<.p; J Ho 

where A. 
1 

; s the (T X T) 

1 

a hk = 

0 

This implies . . 

[ a • w-1 ul ô<.p. u 
J Ho l 

and 

= 

= 

1 
~ 

1 
ëi2 

tr (A. u u') 
l 

u I A. u 
l 

matrix whose terms are 

; t I h - kl= ; 

otherwi se 

2 T 
= - ëi2 I ut ut . 

t=i+1 -, 

0 
l . 

1 

l 0 
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From (8) we get the components of the score vector 

(a Logt] 1 T 
= l Ee ( ut ut-i/y) aq,. cr2 1 Ho t=i+1 0 

T 1 = cr2 l Ee (ut/yt) Ee (ut · 1Yt ·) 
t = i + 1 0 O - 1 - 1 

The score statistic for testing Ho is the q-dimensional 

vector ~+ 2 ) whose components are 

1 T 
-=---z- I ùt ~t . OoT t=i+1 -l 

The same argument as in 4.c shows that 

i = 1, ... ,q 

A ( 2) sr is asymptoti-

cally equivalent, under Ho , to the vector whose compo­

nents are : 

1 T 
l 

1\, 1\, 

cr2 ut ut . -, 
0 t=q+1 

with 1\, 

Ee (ut/yt) ut = 
0 

02 

Since E0 ~t ~t-i = o 0 

0 /T 

A ( 2) sr is asympto-

tically zero mean normally distributed ; the asymptotic 
(X) 

covariance matrix is l 
j =-oo 

r . 
J 

with, for j > 0 
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1 î-j 
E {(\ 'à t-1 

Lit+j 
'à·t~j-1) r. = pli m î I J 0 t-q t+J-q t=q+1 0 

and r -j = r '. 
J 

where Li: is the vector whose components are 

The typical element of f. 
J 

is 

E ( 'àt 'àt k 'àt . 'àt . ) 0 - +J +J-t 0 

and, therefore, r. = o V j f o • It follows that the 
J cr2 -(2) asymptotic covariance of O ~T is the diagonal matrix ;r 

r
0 

whose diagonal elements are 

1 T 
· plim î I 

t=q+1 
E Li2 "'2 

0 t ut-i 
0 

= 
1 T 

plim T I 
1 q+ 

(12 (12 
t t-i i = 1, ••• ,q 

Finally the test of Ho ~ = o is based on the statistic 
T - - 2 

( l 'èit (.Ît-i] _Ï t=, +1 
1=1 T "'2 "'2 l ut ut-i t= 1 + 1 

whose distribution under Ho is x2 (q) and the test proce-
dure follows. Note that, except in the special cases discus­
sed in 4.e., the ; th term of the previous sum is not equal 
to T times the square of the correlation coefficient 
between the generalized residuals and "' ut . -1 
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On the estimation side, the same argument as in 5.a shows 
A 

that the maximum likelihood estimator (b
0
T,a~T) of (b,02 ) , 

constrained by lP = o , is such that b
0
T remains consistent 

if <P 'f 0 , whereas converges to 

More precisely 

a2 r, a2 = = 02 + u 1 - P 1 lP1 - ... - PqlPq L 

'l1. 1 s 
1 

are the coefficients of the long where the 

of 1 by cI> ( B) ; therefore, for T sufficiently 

will overestimate 

6.c. General moving average disturbances 

00 21 I 'Pij > 
i = 1 

division 

large, 

Let us now assume that the model is the same as 

in the previous subsection except that the ut process is 

assumed to be a. moving-average process of order q defined 

by : 

= 

= 

It is easily seen that the same arguments holds provided 

that the matrix W is replaced by a matrix V whose ele­

ments are (with the convention y
0 

= o ) 

02 
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= 
o2 1~ 'lyk Yk-li-jj k= 1-J 

= 0 

if li - jj < q 

otherwise 

A similar algebra showsthat, under Ho : {Yi= o , i = 1, ••• ,q} , 

the score vector associated with the para-

meters y. 
1 

is identical to the score vector of the pre-

vious subsection ; in other words we have 

(a Logi] 
ay i Ho 

= 

It follows that exactly the same statistic can be used for 

testing H
0 against autoregressive or against moving average 

scheme (compare GODFREY (1978), GODFREY and WICKENS (1982)). 

The remarks concerning the estimation remain also valid. 
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